

Plant Bacteriology Bacterial Diagnosis-Part 3

Compiled by N. Hassanzadeh

Version 4.25

January 1, 2025

Website Address: http://www.phytobacteriology.com

Contact address

- Department of Plant Protection, Faculty of Agricultural Sciences and Food Industries, Science & Research Branch, Islamic Azad University, Tehran-Iran.
- P.O. Box: 14155/775, Postal Code: 1477893855
- Branch website: www.srbiau.ac.ir
- e-mail addresses:
- hasanzadehr@srbiau.ac.ir
- hasanzadehr@yahoo.com

Table of Contents

- Gram positive bacteria
- Non-spore forming Coryneforms:
- *1. Rathayibacter*
- 2. Clavibacter
- 3. Curtobacterium
- 4. Leifsonia
- **5.** Rhodococcus
- Exospore forming branching bacteria:
- Streptomyces
- Endospore forming bacteria:
- Bacillus and Paenibacillus
- Fastidious bacteria
- Fastidious xylem-inhabiting bacteria (FXLB):
- Xylella
- Fastidious phloem-limited bacteria (FPLB):
- BLOs (*ca.* Liberibacter and *ca.* Phlomobacter)
- Spiroplasma
- ca. Phytoplasma

Table of Contents

- Appendices:
- Basic keys for identification of phytopathogenic bacteria
- Key to bacteria likely to be associated with plants
- Symptoms and their expression: Key to pathogens
- ID Flow charts of miscellaneous bacteria
- CABIQ: Computer-assisted identification system of phytopathogenic bacteria
- QBOL: A new diagnostic tool using DNA Barcoding (DNA sequence) to identify quarantine organisms in support of plant health e.g. Barcoding of Bacteria
- ABIS online-Automated Biometric Identification System
- Translations for "bacterium"
- Selected References

Characteristics of the major groups of phytopathogenic bacteria

Gram-Positive Bacteria

Kingdom Monera Classification of Bacteria

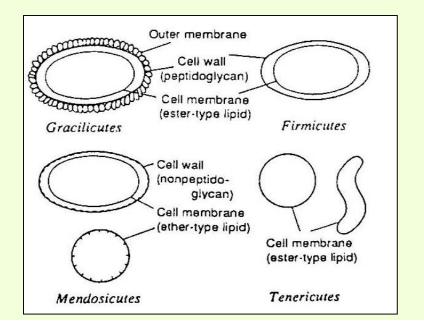
- Within the prokaryote kingdom, four divisions are recognized, distinguished largely on the basis of cell wall characteristics (Murray, 1984). These are:
- Division I Gracilicutes: Gram-negative type cell wall (contains Gram-negative bacteria)
- Division II Firmicutes: Gram-positive type cell wall (contains Grampositive bacteria and actinomycetes)
- Division III Tenericutes: No cell wall (contains class Mollicutes)
- Division IV Mendosicutes: Give evidence of earlier phylogenetic origin (contains class Archaeobacteria).
- Plant pathogenic prokaryotes are present in divisions I to III, and can thus be divided into organisms with a cell wall (true bacteria plus actinomycetes) and those without.

Kingdom Monera Classification of Bacteria

Phylum Firmicutes

- Class Firmibacteria (Mostly single celled bacteria e.g. *Bacillus* & *Clostridium*).
- Class Thallobacteria (Branching bacteria e.g. Clavibacter, Rhodococcus, Streptomyces, Curtobacterium and Leifsonia).
 - Order Actinomycetales

Phylum Gracilicutes


- Class Scotobacteria
 - Order Spirochaetales
 - <u>Order</u> Pseudomonadales
 - Order Rickettsiales
 - Order Chlamydiales
- Class Anoxyphotobacteria
- Class Oxyphotobacteria

Phylum Tenericutes

Class Mollicutes

Phylum Mendosicutes

Class Archaebacteria

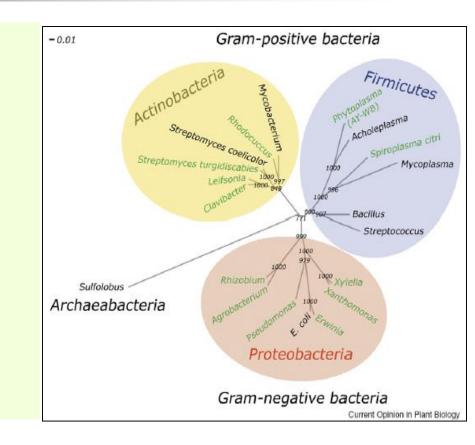
Zeuter Development Corporation, CANADA, 1996; Goto, 1992

Cavalier-Smith Bacterial megaclassification Negibacteria as a root of the universal tree

- Prokaryotes constitute a single kingdom, Bacteria.
- Bacteria is divided into two new subkingdoms:
- 1. Negibacteria, with a cell envelope of two distinct genetic membranes;
- 2. Unibacteria, comprising the new phyla Archaebacteria and **Posibacteria**.
- Archaea and Eucarya are relatively recent (850 Mya) emergents from a line that also gave rise to the modern Gram-positive bacteria and actinobacteria.

Gram-Positive Bacteria Plant pathogenic genus

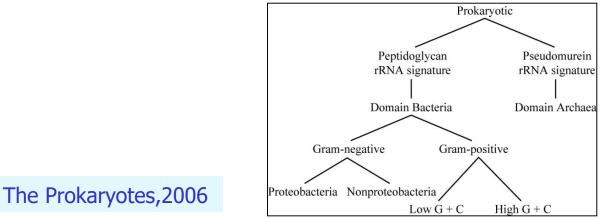
- Posibacteria
- Subdivision 1. Endobacteria
- Class 1. Togobacteria
- Class 2. Teichobacteria → order: Bacillales, Family: Bacilleaceae: Genera: Bacillus and Clostridium
- Class 3. Mollicutes → Genera: *Spiroplasma* & phytoplasma
- Subdivision 2. Actinobacteria
- Class 1. Arthrobacteria
- Class 2. Arabobacteria
- Class 3. Streptomycetes → order Actinomycetales, Families: *Microbacterieacea* : coryneforms *Streptomycetaceae*: Streptomyces


Gram-Positive Bacteria Plant pathogenic genus Division rank is equivalent to phyla

- Division Posibacteria
- Subdivision Endobacteria [low G+C] (below 50% GC)
- Class 1. Togobacteria
- Class 2. Teichobacteria [Firmicutes]
- Bacillus anthracis
- Bacillus cereus
- Bacillus subtilis
- Bacillus halodurans
- Bacillus megaterium
- Clostridium acetobutylicum
- Enterococcus faecium
- Class 3. Mollicutes
- Subdivision Actinobacteria [high G+C] (greater than 50% GC)
- Class 3. Streptomycetes
- coryneforms
- Streptomyces

Cavalier-Smith,2002

Gram-Positive Bacteria Plant pathogenic genus

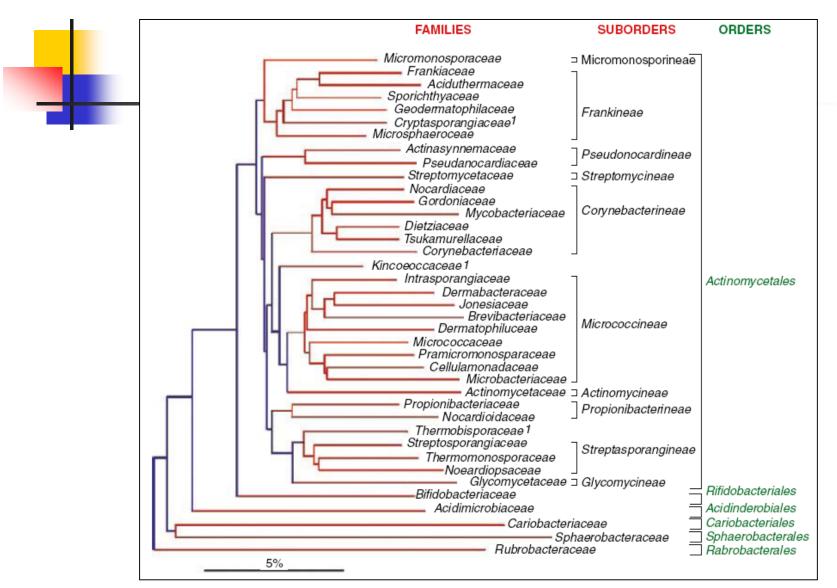

- The two clades that compose the Grampositive bacteria:
- The Actinobacteria (high G+C) and
- The Firmicutes (low G+C), diverged very early in evolutionary history.

Hogenhout and Loria, 2008

Gram-Positive Bacteria Plant pathogenic genus

- Firmicutes with High GC Content of DNA:
- 1. Actinomycetales:
- Mycobacterium, Streptomyces, Corynebacterium, Arthrobacter, coryneforms
- Firmicutes with Low GC Content of DNA:
- 1. Bacillales: Bacillus, Staphylococcus, Paenibacillus
- 2. Clostridiales: Clostridium
- 3. Mollicutes: Mycoplasma, phytoplasma, Spiroplasma

Firmicutes


Plant pathogenic bacteria of the class Actinobacteria

Family	Genus
Order: Actinomycetales	
<i>Microbacteriaceae</i> (Most coryneforms)	Clavibacter, Rathayibacter, Leifsonia, Curtobacterium
Nocardiaceae	Rhodococcus
Streptomycetaceae	Streptomyces

The genera *Streptomyces* and *Rhodococcus* have very wide host ranges. Whereas, the genera *Clavibacter* and *Leifsonia* are host-specific at the species or subspecies level.

The Prokaryotes, 2006; Hogenhout and Loria, 2008

Intraclass relatedness of Actinobacteria, based upon 16S rDNA/rRNA sequence comparison

The Prokaryotes (chapter 1.1.1),2006

Two prokaryotic domain Gram positive plant pathogenic bacteria

- There are two prokaryotic domains (or empires):
- 1. Bacteria (or *Eubacteria*)
- 2. Archaea (or *Archaeobacteria*), are subdivided into 29 phyla (or divisions):
- The domain Bacteria comprises of 27 phyla (or divisions).
- The Phylla related to Gram positive plant pathogenic bacteria:
- 1. Actinobacteria
- 2. Firmicutes
- 3. Tenericutes

Gram-Positive Bacteria Plant pathogenic genera Screenshot of part of the classification of the domain bacteria/phylum Actinobacteria

Domain: Bacteria Phylum: "Actinobacteria" **Class:** Actinobacteria Subclass: Actinobacteridae Order: Actinomycetales Suborder: Corynebacterineae Family: Nocardiaceae (Rhodococcus) Suborder: Micrococcineae Family: Microbacteriaceae (coryneforms) Suborder: Streptomycineae Family: <u>Streptomycetaceae</u> (*Streptomyces*)

Gram-Positive Bacteria Plant pathogenic genera Firmicutes

Domain Bacteria Phylum: "Firmicutes" Class: "Bacilli" **Order: Bacillales** Family: Bacillaceae (Bacillus) Family: Paenibacillaceae (Paenibacillus) Class: "Clostridia" Order: Clostridiales Family: Clostridiaceae (Clostridium)

Gram-Positive Bacteria Plant pathogenic genera Tenericutes

Domain Bacteria
 Phylum: "Tenericutes"
 Class: Mollicutes
 Order: Entomoplasmatales
 Family: Spiroplasmataceae
 Genus: Spiroplasma

Identification of the bacterial pathogens Coryneforms (coryneform plant pathogenic bacteria)

Disease diagnosis and pathogen diagnostics

The family Microbacteriaceae Plant pathogenic coryneform bacteria

- The term "coryneform" is applied to any non-sporing Gram-positive rod of irregular outline.
- Some genera including *Clavibacter, Curtobacterium, Rathayibacter* and *Rhodococcus* are phytopathogenic species within the coryneform group of bacteria.
- However, most coryneform bacteria are saprophytes that live in soil, water and organic matter.
- The saprophytic coryneform bacteria are widely distributed in nature.

The Family Microbacteriaceae Plant pathogenic coryneform bacteria

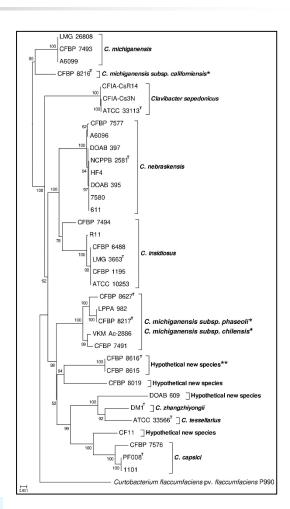
- The family Microbacteriaceae embraces a large group of predominantly aerobic Gram-positive bacteria of high G+C content that are distinguished from other actinobacteria by a combination of their:
- 1. Unusual B group cell wall peptidoglycan and
- 2. Unsaturated respiratory menaquinones.
- The family is a member of the order Actinomycetales, class Actinobacteria and currently harbors 15 genera including the plant pathogens:
- *1. Clavibacter*,
- 2. Curtobacterium,
- 3. Rathayibacter,
- 4. Leifsonia,
- Only *Rhodococcus* belongs to the family Nocardiaceae.

Classification of Actinobacteria

Based on analyses of 16S ribosomal RNA and the distribution of 16S rDNA signature nucleotides

- Actinomycetes comprises of the genera such as *Corynebacterium*, *Gordonia*, *Mycobacterium*, *Nocardia*, *Rhodococcus*, *Skermania*, *Tsukamurella* which form a monophyletic group in the 16S rRNA gene tree.
- The following pattern of 16S rDNA signature nucleotides was proposed as characteristic of the family: nucleotides at positions 45-396 (U-A), 144-178 (C-G), 258-268 (A-U), 497 (A), 615-625 (A-U), 694 (G), 771-808 (G-C), 839-847 (G-U), 1256 (G), 1310-1327 (A-U), and 1414-1486 (U-A).
- Table presents Phytopathogenic families and genera of the class Actinobacteria.

Family	Genus
Microbacteriaceae	<i>Clavibacter Curtobacterium Rathayibacter Leifsonia</i>
Nocardiaceae	Rhodococcus
Streptomycetaceae	Streptomyces


The Prokaryotes (chapter 1.1.1),2006

Mycobacterium vaccae is a natural soil bacterium make you smarter.

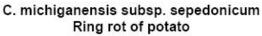
Classification

Whole-genome sequence-based phylogenetic analysis of plant-pathogenic members of *Clavibacter*

- Whole-genome sequence-based phylogenetic analysis of plantpathogenic members of *Clavibacter*.
- The neighbour-joining tree was generated based on the wholegenome sequences of 49 Clavibacter strains using the galaxy Europe online service (https://galaxyproject.eu/) and 1000 bootstrap replications.
 Clavibacter nebraskensis strains were clustered in a monophyletic clade phylogenetically related to the alfalfa pathogen *C. insidiosus*.
- *Needs taxonomic re-evaluation.
- **Taxonomic description is in preparation.

Thallobacteria

Clavibacter


- pleomorphic, mostly rod-like
- diaminobutyric acid in cell wall
- usually non-motile

Streptomyces scabies

- spore-forming
- branched vegetative hyphae
- soil inhabitants
- attacks potato and other root vegetables

C. michiganensis subsp. michiganensis Bacterial canker of tomato www.umassvegetable.org

Rhodococcus fascians

Fasciation of sweet pea

Common scab of potato

Cuppels,2007

Diseases caused by coryneform plant pathogens *Clavibacter* spp.

Clavibacter capsici	Bacterial canker disease in pepper
C. insidiosus	Bacterial wilt of alfalfa
C. michiganensis	Bacterial canker of tomato
C. nebraskensis	Bacterial wilt and blight of corn (Goss's wilt)
C. phaesoli	Bacterial leaf yellowing on bean
C. sepedonicus	Bacterial ring rot of potato
C. tessellarius	Mosaic-like syndrome on wheat
C. zhangzhiyongii	Leaf brown spot and decline of barley

Diseases caused by coryneform plant pathogens *Curtobacterium* spp.

- Plant pathogenic members of *C. flaccumfaciens* are divided into five pathovars based on their host of isolation, pathogenicity and host range (Collins and Jones, 1983), i.e.
- *C. flaccumfaciens* pv. *flaccumfaciens* causing bacterial wilt of dry beans (Hedges, 1922),
- *C. flaccumfaciens* pv. *poinsettiae* causing bacterial canker of poinsettia (Pirone and Bender, 1941),
- *C. flaccumfaciens* pv. *betae* the cause of silvering disease of red beet (Keyworth *et al.*, 1956), *C. flaccumfaciens* pv. *ilicis* causing bacterial blight of American holly (Mandel *et al.*, 1961, Young *et al.*, 2004), and
- C. flaccumfaciens pv. oortii the agent of bacterial wilt and leaf spot of tulip (Saaltink and Maas Geesteranus, 1969).

Diseases caused by coryneform plant pathogens *Curtobacterium* spp.

- More recently, two additional pathovars were described, namely *C. flaccumfaciens* pv. *basellae* the causal agent of bacterial leaf spot of malabar spinach (Basella rubra [B. alba]) (Chen *et al.*, 2000) and *C. flaccumfaciens* pv. *beticola* the causal agent of bacterial leaf spot of sugar beet (Chen *et al.*, 2007).
- However, none of the latter new pathovars has so far been included in the list of plant pathogenic bacteria provided by the International Society of Plant Pathology Committee on the Taxonomy of Plant Pathogenic Bacteria (ISPP-CTPPB; Bull *et a*l., 2010, Bull *et al.*, 2012, Bull *et al.*, 2014).
- A recently published study described *Curtobacterium allii* causing onion bulb rot as the only plant pathogenic species of Curtobacterium outside *C. flaccumfaciens* (Khanal *et al.*, 2022).

Diseases caused by coryneform plant pathogens *Curtobacterium*, *Leifsonia* and *Rathayibacter* spp.

Curtobacterium flaccumfaciens pv. betae	Vascular wilt and leaf spot of red beet (<i>Beta vulgaris</i>)
<i>C. f.</i> pv. <i>flaccumfaciens</i> (multicolored bacterium)	Bacterial wilt bean (<i>Phaseolus, Vigna</i>)
<i>C. f.</i> pv. <i>ilicis</i> (syn. <i>Arthrobacter ilicis</i>)	Blight of American holly (<i>Ilex opaca</i>)
<i>C. f.</i> pv. <i>oortii</i>	Yellow pustule of tulip (bulb symptoms) or hell fire (leaf symptoms)
<i>C. f.</i> pv. <i>poinsettiae</i>	Leaf spot and stem canker of Poinsettia (<i>Euphorbia pulcherrima</i>)
Leifsonia xyli subsp. xyli	Ratoon stunt in sugarcane
<i>Leifsonia xyli</i> subsp. <i>cynodontis</i>	Bermuda grass stunting disease
Rathayibacter iranicus	Gumming (tundu) disease or yellow slime of grains (wheat)

Diseases caused by coryneform plant pathogens

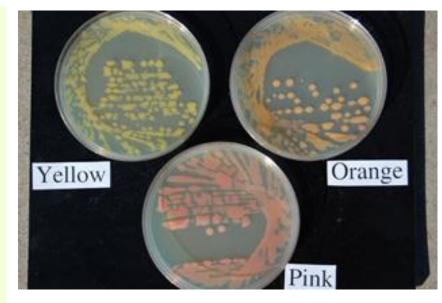
R. rathayi	Gumming disease or yellow slime of grains (Dactylis glomerata)
R. toxicus	Gumming disease or yellow slime of grains (rye grass, <i>Lolium rigidum</i>)
R. tritici	Gumming disease or yellow slime of grains (wheat)
Rhodococcus fascians	Bacterial fasciation, leafy gall, cauliflower-like galls on <i>Gladiolus</i> corms, Abnormal sprout formation on phlox.

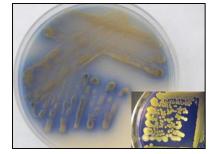
Rhodococcus has very wide host ranges, whereas the two other Actinobacteria genera i.e. *Clavibacter* and *Leifsonia* are host-specific at the species or subspecies level.

Note: *Arthrobacter ilicis* is excluded from ISPP list of plant pathogenic bacteria and *Curtobacterium flaccumfaciens* pv. *ilicis* has been proposed for the pathogen of American holly.

Characteristics of coryneform plant pathogens Phenotypic criteria

- These are obligately aerobic to facultatively anaerobic;
- Non-spore forming organisms;
- With varying cell morphology, ranging from:
- 1. Coccoid(*Rhodococcus*), small irregular rods to
- 2. Branched fragmenting hyphae (*Leifsonia*).
- Mycolic acids and arabinogalactan are not present.




Colonies of *Clavibacter m.* subsp. michiganensis on SCM:

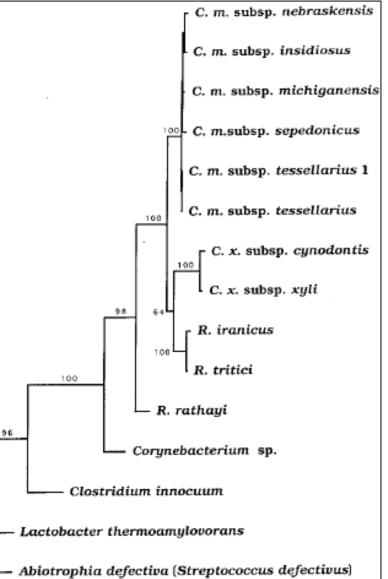
Colonies are small, light to dark gray, glistening, fludial and often irregularly shaped.

Characteristics of coryneform plant pathogens Phenotypic criteria

- Bacterial wilt of dry beans caused by multicolored bacterium *Curtobacterium flaccumfaciens* pv. *flaccumfaciens*.
- Young wilt pathogen culture exhibiting purple color variant on nutrient broth yeast extract medium (NBY).
- Note purple-blue pigments diffusing into media.
- Aged culture showing remnants of purple pigments.

Characteristics of coryneform plant pathogens Some other phenotypic criteria

1. Based on common phenotypic criteria such as:


- Cell wall components,
- Pigmentation of cell culture, and
- Selected physiological features have been widely applied to coryneform genera such as of *Clavibacter* and *Rathayibacter* can be differentiate.

2. On the basis of cell wall composition:

- The genus *Clavibacter* comprises five species and several subspecies of coryneform phytopathogenic bacteria which contain 2,4-diaminobutyric acid.
- Mycolic acids and arabinogalactan are not present.
- **3.** Based on additional phenotypic markers, including menaquinone-type markers and others, these phytopathogenic coryneform bacteria have been reclassified into two genera, *Clavibacter* and *Rathayibacter*.

Phylogenetic tree Based on 16S rDNA analysis

 Phylogenetic tree constructed by parsimony analysis of 16S rRNA gene sequences from 11 members of the genera *Clavibacter* and *Rathayibacter* and 4 other related gram-positive bacteria, with *Abiotrophia defectiva* as the outgroup.

Lee et al.,1997

Differential characteristics of phytopathogenic coryneform bacteria

·			Gro	wth	Ac	id Producti	onª	Utiliz	ation ^b	Hydrolysis°		
Pathogen	Motility	Pigment ^d	CNS	TTC	Ribose	Sorbitol	Inulin	Acetate	Formate	Casein	Esculin	
Arthrobacter ilicis	+	Y	+	+	+	-	-	+	+	+	+	
Clavibacter iranicum	-	Y	-	ND	-	-	+	-	-	-	+	
Clavibacter michiganensis												
subsp. insidiosus	-	Y/B	-	+	-	-	-	-	-	-	+	
subsp. michiganensis	-	Y/V_1	+	+	-	-	-	-	-	-	+	
subsp. nebraskensis	-	O/V ₂	+	-	-	+	-	+	-	-	+	
subsp. sepedonicus	-	w	-	-		+	-	+	-	-	+	
subsp. tessellarius	-	0	+	+	-	+	-	-	1.	-	+	
Clavibacter rathayi	-	Y	V	ND	-	-	-	-	-	-	+	
Clavibacter tritici	-	Y	+	ND	-	.=to	+	+	-	-	+	
Clavibacter toxicus	-	Y	ND	ND	ND	ND	-	-	ND	ND	ND	
Clavibacter xyli			*								1. 14.03999	
subsp. cynodontis	-	Y	ND	ND	-	-	-	-	-	-	-	
subsp. xyli	-	W	ND	ND	-	-	-	-	-	-	-	
Curtobacterium flaccumfaciens												
pv. betae	v	Y	v	+	+	+	-	+	-	-	0	
pv. flaccumfaciens	v	Y/O/P	v	+	+ ^D	-	-	+	-	+	+	
pv. oortii	+	Y	v	+	+ ^D		-	-	-	+	+	
pv. poinsettiae	v	0	v	+	+ ^D	+	-	+	-	+	+	
Rhodococcus fascians	-	0	-	+	+ ^D	+	•	+	+	-	-	

Abbreviations: +, 80% or greater positive; -, 80% or greater negative; V, variable, depending on the strain; +D, delayed positive; ND, not determined.

*RSD broth (see d, p. 225) with yeast extract reduced to 0.1 g/L, and the test compound (0.5% w/v) replacing glucose.

^bRSD broth as above, except the test compound at 0.1% w/v and bovine serum albumin omitted from the medium when testing Arthrobacter and Corynebacterium species.

°SC medium (see b, p. 225) supplemented with 1% (w/v) casein or 0.1% (w/v) esculin and 0.05% (w/v) ferric citrate. Clearing of the medium with casein or the development of a brown color in the medium with esculin indicates hydrolysis.

^dNBY agar (see c, p. 4) used for all pathogens, except SC agar used for *C. xyli* subspecies. Y, yellow, B, blue; O, orange; W, white or colorless; P, purple; V_1 various pigments (occasional variants are pink, red, orange, and white or colorless); V_2 , occasional variants are yellow; ND, not done. Colors refer to those of non-diffusable pigments, except as noted. The blue pigment is intracellular indigoidine granules sometimes produced in addition to yellow pigment. The purple is extracellular and occasionally found.

Differential characteristics of phytopathogenic coryneform bacteria

	Orga aci		Enzy	ymes	Selective medium			Pur			ium C olus		Colony characteristics				
Bacterial species	Fm	Na	T8 0	Gel	CNS	TTC	Mot	Man	Rha	Suc	Lac	Tre	Man	Rha	Ind	Ep	Colour†
A. ilicis	v	+	_	+	+	+	v	+	+	_	v	+	+	+	_	_	Y;W/Be
Cl. michigenense subsp.																	
insidiosum	_	_	-		-	-	-	+	_	_	v	v	+	-	+	+	DY
Cl. m. subsp. michiganense	+	+	_	-	+	+	_	-	_	v	v	+	+	-	_	_	Y;DY
Cl. m. subsp. nebraskense	+	v	_	-	+			_	-	_	v	+	v	_	_	_	0
Cl. rathayi	+	_		v	_		_	+	_	_	_	+	+	-	_	_	BrY
Cl. m. subsp. sepedonicum	v	v	_	_	-		_	+	_	+	_	-	+	_	_	_	W/Be
Cl. m. subsp. tessellarius	+	+	+	_	+	+	-	_	_	v	+	+	+	-	_	_	o
Cl. tritici	+	v	+	_	+	_	_	+	_	+	_	v	+	_	_	_	BrY
Cur. flaccumfaciens pv. betae		+	+	v	+	+	+	-	+	v	+	+	+	+	-	-	Y;DY
Cur. fl. pv. flaccumfaciens	+	v	+	v	+	+	v	_	v	v	v	+	+	+	_	v	Y,V
Cur. fl. pv. oortii		+	+	+	+	+	+	_	+	v	+	+	+	+	_	_	Y;V
Cur. fl. pv. poinsettiae	_	+	+	v	+	+	v	_	-	v	+	+	+	_	_	_	0;Y/0
R. fascians	+	+	+		-	+	_	_	-	_	_	+	+	_	_	_	Y/O;BrY

+, 80-100% of organisms positive; -, 80-100% of organisms negative; v, organisms were variable either between strains or when test was repeated.

* Abbreviations: Fm, fumaric acid; Na, sodium acetate; T80, lipase for Tween 80; Gel, gelatinase; CNS, growth on CNS; TTC, growth on TTC; Mot, motility; Man, mannitol; Rha, rhamnose; Suc, sucrose; Lac, lactose; Tre, trehalose; Ind, presence of indigoidine; Ep, presence of extracellular pigments.

† Colony colour on NBY: DY, dull yellow; Y, yellow; O, orange; BrY, bright yellow; Y/O, yellow-orange; W/Be, white/beige; V, variable.

Henningson and Gudmestad, 1991

Physiological and morphological characteristics of the 16S rRNA restriction types in comparison to reference strains of the genera *Curtobacterium, Clavibacter* and *Rathayibacter*

Characteristic	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Number of strains	2	1	1	2	2	2	5	5	1	1	1	1	1	1	1	1	1	5	5	5	1	1	1	1	5
Colony colour	У	0	у	у	0	у	0	0	у	у	ly	i	0	0	У	y/b	w	0	y/yo	У	y	У	У	У	у
Motility	+	_	+	d	d	d	+	+	+	+	+	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Hydrolysis of:																									
Gelatin	+	w+	+	_	d	+	d	d/+*	_	_	+	+	w+	_	_	_	_	d	d	_	_	_	_	_	_
Aesculin	+	_	+	+	+	+	+	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	w	_	+
Casein	+	+	+	_	d	+	d	d/+*	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Starch	_	_	_	d	d	d	d	´-	_	_	_	_	_	_	_	_	_	_	d	d/+†	_	_	_	_	_
Tween 80	_	w+	_	d	+	d	+	+	+	_	_	+	_	_	_	_	_	_	_	+	_	_	_	_	+
Tween 60	+	+	+	+	+	+	+	+	+	+	+	+	_	_	_	_	_	d	_	+	+	+	+	_	+
DNase	w +	w+	w+	_	_	_	_	_	_	_	_	_	+	+	+	+	_	w+	+	+	_	_	_	_	_
Levan	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	+	_	_
Oxidative acid prod	uction	from:																							
Adonitol	+	+	+	+	+	+	+	_	+	_	+	_	_	_	_	_	_	_	d	_	_	_	_	_	_
Inositol	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	_	d	+	_	_	_	_	_	d/−‡
Inulin	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_	d/-†	+	+	_	+	+
Lactose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	_	_
D-Maltose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	_	_	_	+
D-Melezitose	+	+	+	+	+	+	+	+	+	+	+	+	_	_	_	_	_	_	+	+	_	_	_	_	_
Melibiose	+	+	+	+	+	+	+	+	+	+	+	+	-	-	_	_	-	+	+	d/−†	-	-	_	-	w+
D-Sorbitol	+	+	+	+	+	+	+	+	_	_	_	_	+	w+	_	_	_	+	+	d/-†	w+	w+	w+	w+	_
L-Sorbose	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_	-	-	_	d/-†	-	-	_	-	_
Raffinose	+	+	+	+	+	+	+	+	_	_	+	+	_	_	_	_	_	+	+	+	_	_	_	_	+
L-Rhamnose	+	+	+	+	_	+	d	d/-*	+	+	+	+	-	-	_	_	_	d	d	+	_	-	-	-	d/+‡
Ribose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	_	_	+	_	_	_	_	+

Physiological and morphological characteristics of the 16S rRNA restriction types in comparison to reference strains of the genera *Curtobacterium, Clavibacter* and *Rathayibacter* **Continued**

- Abbreviations: +, positive reaction; w, weakly positive ; -, negative; d, reaction differs among strains ; y, yellow; i, ivory; ly, light yellow; o, orange; y/b, blue pigment of the intracellular indigoidine granules sometimes produced in addition to the yellowpigment; yo, yellow-orange; w, white.
- Species/genotype:
- 1, Curtobacterium accumfaciens pv. accumfaciens; 2, Curtobacterium
- accumfaciens pv. accumfaciens; 3, Curtobacterium accumfaciens pv. accumfaciens (Corynebacterium accumfaciens subsp. violaceum); 4, Curtobacterium accumfaciens pv. betae; 5, Curtobacterium accumfaciens pv. poinsettiae; 6, Curtobacterium accumfaciens pv. oortii; 7, genotype A; 8, genotype D; 9, Curtobacterium luteum; 10, Curtobacterium citreum; 11, Curtobacterium pusillum; 12, Curtobacterium albidum; 13, Clavibacter tessellarius; 14, Clavibacter. nebraskensis; 15, Clavibacter michiganensis; 16, Clavibacter michiganensis subsp. insidiosus; 17, Clavibacter sepedonicus; 18, genotype B1; 19, genotype B2; 20, genotype

Characteristics the genus Rathayibacter

- Four species:
- 1. R. rathayi
- 2. R. tritici
- 3. R. toxicus
- 4. R. iranicus
- All nematode transmitted, in grasses;
- Produce toxins important in grazing;
- Not easy to differentiate other than by genetic fingerprinting.

Characteristics of the Rathayibacteria

- Rathayibacter spp. cause gumming diseases, usually characterized by yellow bacterial slime on seed heads, stems and leaves of the plant host.
- Rathayibacters use as vectors the highly specialized plant-pathogenic nematodes of the genus Anguina.
- It should also be noted that Anguina tritici was demonstrated to transmit R. rathayi into Triticum spp. and initiate a disease similar to that caused by R. tritici.
- Rathayibacter toxicus annual raygrass toxicity bacterium can produce a neurotoxin that can be fatal to grazing animals.

Two novel Rathayibacter species

- Two novel species, Rathayibacter caricis sp. nov. and Rathayibacter festucae sp. nov. are proposed for two coryneform actinomycetes:
- Rathayibacter caricis found in phyllosphere of Carex sp.
- Rathayibacter festucae found in leaf gall induced by the plant-parasitic nematode Anguina graminis on Festuca rubra L.

Isolation methods Two new *Rathayibacter* species

Rathayibacter caricis

- The gall surface was sterilized with 75% (v/v) ethanol for 1 min and dried; the galls were cut into pieces, added to 2 ml 0±85% (w/v) NaCl solution and milled.
- The plants of Carex sp. (without any visible symptoms of disease) were collected for pathogenicity tests.
- Rathayibacter festucae
- An overhead part of a fresh plant was placed into a flask with saline solution (0.85% NaCl) and shaken for 1 h on a rotary shaker.
- The above plant gall and phyllosphere suspensions were plated by adding 1 drop into corynebacterium agar (CB agar) and incubated for 1 month at room temperature (18-24°C).

Characteristics of species in the genus *Rathayibacter*

Characteristic	1	2	3	4	5	6
Colony colour	Yellow	Rose-orange	Yellow	Yellow	Yellow	Yellow
Observation of visible	2	2	2	2	2	4
growth (days)						
Cell-wall sugar:*						
Glucose	1.0	1.0	+	+	+	+
Galactose	_	_	+	+	_	-
Mannose	4.5	1.8	+	+	+	+
Rhamnose	7.0	1.3	+	+	+	+
Xylose	0.7	0.3	+	+	_	_
Fucose	1.8	_	_	_	_	_
Oxidase	w	+	W	W	W	W
Methyl red test	+	+	_	_	_	_
Voges-Proskauer	+	+	_	_	_	_
Utilization of:						
Dulcitol	+	+	_	_	_	_
meso-Inositol	+	+	_	_	_	_
Inulin	+	+	_	+	+	_
Melibiose	+	+	_	_	_	-
meso-Erythritol	_	+	_	_	_	_
Salicin	+	+	_	+	+	_
Sorbitol	+	+	_	+	_	_
Hydrolysis of:						
Tween 60	_	+	+	+	+	_
Tween 80	_	+	_	+	+	-
Tolerance to:						
5% NaCl	+	_	_	+	_	-
0.03 % Tellurium	_	_	+	+	+	-
acetate						
Source plant†	Carex sp.	Festuca rubra L.	Dactylis glomerata L.	Triticum aestivum L.	Triticum aestivum L.	Lolium rigidum Gaud.
Nematode associated‡	No data	Anguina graminis	Anguina sp.§	Anguina tritici	Anguina tritici	Anguina funesta

Abbreviations: +, positive ; -, negative; w, weak or negative, depending on growth phase. Strains: 1, *Rathayibacter caricis* sp.; 2, *Rathayibacter festucae* sp.; 3, *R. rathayi*; 4, *R. tritici*; 5, *R. iranicus* VKM Ac-1602T; 6, *R. toxicus*.

Dorofeeva et al.,2002

Characteristics the genus Clavibacter

- Vascular diseases caused by *Clavibacteria* and disease symptoms *Clavibacter michiganensis* causes a vascular disease with very high titers in a variety of agriculturally important plants and, in fact, may be considered the most important bacterial pathogen.
- Clavibacter sepedonicus is pleomorphic, slightly clubshaped short rod and this rod size is about 0.5-1.0 μm.
- Latent infection is observed in contaminated seeds.
- Pathogenicity Factors originally, extracellular polysaccharides (EPS) were proposed to be the main pathogenicity factor inducing wilt symptoms.

Isolation Media *Clavibacteria* spp.

- 1. Nutrient agar supplemented with 1% glucose or 5% sucrose.
- 2. Glucose-yeast-calcium (GYCA) medium.
- 3. NBY medium.
- 4. Doppel's medium.
- 5. CB agar or any other media based on peptone, yeast extract, and glucose may be used as nonselective media for isolation of plant pathogenic *clavibacteria*.

Doppel's Medium (Lelliott and Stead, 1987)

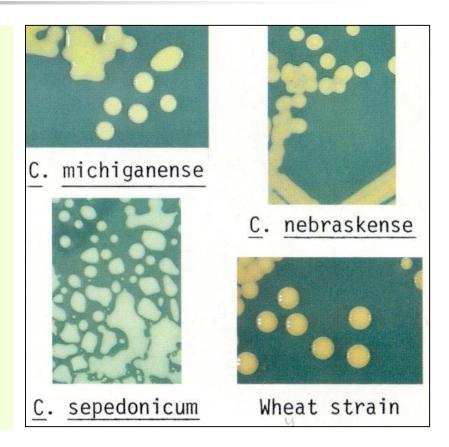
g
g
g
ter

NBY Medium (Gross and Vidaver, 1979a; Vidaver and Davis, 1988)

Nutrient broth	8 g
Yeast extract	2 g
K_2HPO_4	2 g
$\rm KH_2PO_4$	0.5 g
Agar	15 g
Water	1 liter
рН 7.2	

Fifty ml of 50% glucose and 1.0 ml of 1M MgSO₄ \cdot 7H₂O are both added after separate filter sterilization.

Isolation and pigment development Semi-selective media *Clavibacter michiganensis*


- Six representative semi-selective media for the detection of *C. michiganensis* subsp. *michiganensis*, namely CMM1T, SCM, SCMF, BCT, and SMSMM:
- The composition of each medium per 1 L were as follows:
- CMM1T (10 g sucrose, 3.32 g Tris base, 11.44 g Tris-HCl, 0.25 g MgSO₄.7H₂O, 5 g LiCl, 2 g yeast extract, 1 g NH₄Cl, 4 g casamino acids, 15 g agar, 10 mg polymyxin B sulfate, 28 mg nalidixic acid, 100 mg nystatin).
- SCM (10 g sucrose, 0.1 g yeast extract, 1.5 g H₃BO₃, 0.25 g MgSO4.7H₂O, 2 g K₂HPO₄, 0.5 g KH₂PO₄, 18 g agar, 30 mg nalidixic acid, 50 mg nicotinic acid, 100 mg nystatin, 10 mg potassium tellurite),
- SCMF (10 g sucrose, 2 g yeast extract, 1.5 g H₃BO3, 0.25 g MgSO₄.7H₂O, 2 g K₂HPO₄, 0.5 g KH₂PO₄, 18 g agar, 20 mg nalidixic acid, 50 mg nicotinic acid, 100 mg nystatin, 10 mg potassium tellurite, 80 mg trimethoprim),
- BCT (2.5 g mannitol, 2 g yeast extract, 1 g K_2HPO_4 , 0.1 g KH_2PO_4 , 0.05 g NaCl, 0.1 g MgSO_4. 7H₂O, 0.015 g MnSO4. H₂O, 0.015 g FeSO₄. 7H₂O, 0.6 g H₃BO₃, 15 g agar, 20 mg nalidixic acid, 100 mg trimethoprim, 20 mg polymyxin B, 4.2 mg epoxiconazole, 12.5 mg fenpropimorph), and
- SMCMM (20 g glycerol, 5 g peptone, 3 g yeast extract, 2 g K₂HPO₄, 0.5 g KH₂PO₄, 0.25 g MgSO₄. 7H2O, 5 g LiCl, 15 g agar, 20 mg nalidixic acid, 40 mg cycloheximide, 80 mg K2Cr₃O₇, 2 mg NaN₃, 2.1 mg 2,4,5,6-tetrachloroisophthalonitrile).
- All tested semi-selective media contained nystatin or cycloheximide. Both antibiotics inhibit the growth of fungi. Moreover, it is considered that other antimicrobial agents influence selectivity for *C. michiganensis* subsp. *michiganensis* in bacteria.
- R2A (per 1 L: 0.5 g glucose, 0.5 g soluble starch, 0.5 g yeast extract, 0.5 g proteose peptone no. 3, 0.5 g casamino acid, 0.3 g K₂HPO₄, 0.05 g MgSO4. 7H2O, 0.3 g sodium pyruvate, 15 g agar) medium containing nystatin at 100 μg mL⁻¹ was used to detect total cultural bacteria in seed samples(SOMEYA *et al.*,2020).

Isolation and pigment development *C. michiganensis* subsp. *insidiosus*

- Modified Burkholder's agar (Straley *et al.*,1974), containing 250 ppm actidione (cycloheximide), is recommended for primary isolation and development of pigment (Close & Mulcock,1972).
- Isolations should be incubated at 20°C and take 5-7 days to develop.

Cultural morphologies of different species of *Clavibacter*

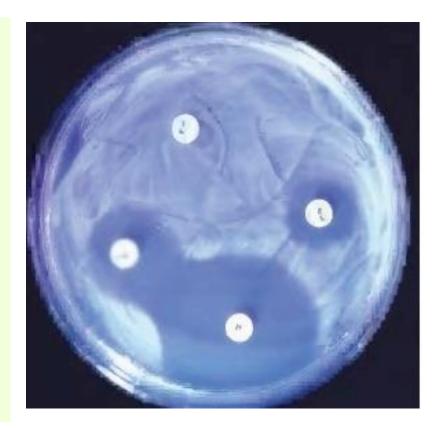
- Clavibacter michiganense subsp. insidiosum (Cmi),
- *C. michiganense* subsp. *michiganense* (*Cmm*),
- *C. michiganense* subsp. *nebraskensus* (*Cmn*).

Bacteriocins *Clavibacter* subspecies

- Inhibition of closely related strains by other *Clavibacter* subspecies was reported early.
- Gross and Vidaver (1979a) showed, that 85% of the tested strains of the subspecies *Cmi*, *Cmm*, and *Cmn* produced one or more bacteriocins.
- The size of inhibition zones varied with strains, incubation temperature, and media used.
- In most cases all the other *Clavibacter* subspecies and additionally some *Rathayibacter* and *Curtobacterium* strains were affected by the bacteriocin.

Test for production of bacteriocin by *Clavibacter*

- Typing of bacterial strains by the pattern of sensitivity to bacteriocins or phages is a useful aid for identifying plant pathogenic bacteria.
- Bacteriocins are toxic, narrowspectrum protein metabolites of bacteria that inhibit/kill related bacteria.
- Inhibition of growth of (most of the) related bacteria tested, visible as a clear halo (no growth) around the colonies of different *Clavibacter* species.


Phages of *Clavibacter*

- A few phages have been isolated for
- 1. Clavibacter insidiosum (Ci),
- 2. C. michiganense (Cm),
- 3. Clavibacter nebraskensis (Cn).
- All are virulent and subspecies-specific.
- They have isometric heads and long non-contractile tails.
- CMP1 from Cm was shown to be specific for virulent Cm strains (Echandi and Sun,1973).
- It is a DNA phage with a size of about 60 kb.
- No lysogenic phage was reported up to now.

Sensitivity test for antibiotics

Clavibacter michiganensis subsp. michiganensis

- The bacterium
 C.michiganensis subsp. *michiganensis* is:
- Sensitive to tetracycline (TE).
- Moderately sensitive to streptomycin (S),and erythromycin (E).
- Insensitive to penicillin (P).

Selected differentiating characteristics of the *C. michiganensis* subspecies

Subspecies	Pigmentation	Gelatin liquefaction	Utilization of acetate	Reducing sugar production	Levan production
Cmm	yellow	+	+	variable	-
Cms	white	-	+	+	-
Cmi	blue-gray	-	-	-	-
	(yellow)				
Cmn	orange	-	+	+	+
Cmt	orange		-		

Eichenlaub *et al.*,2006

On NBY medium certain species exhibited very characteristic colony colours that could be used tentatively to identify the organisms. For example, *Clavibacter michiganense* subsp. *insidiosus* produced indigoidine (a deep blue and indigo mix) on the colony edges.

Characteristic	Cl. m. subsp. michiganensis	Cl. m. subsp. insidiosus	Cl. m. subsp. nebraskensis	Cl. m. subsp. sepedonicus	Cl. m. subsp. tesselarius
Pigment, NBY agar	Y	Y, BL	O (rarely Y)	W	О
Pigment, CB agar	Y	W, YW, BL	0	YW	RO
Cell wall sugars					
Glucose	d	+	+	+	+
Fucose	+	+	+	-	+
Acid from					
Lactose	+	+	+	-	+
Mannose	+	+	+	d	+
L-Ribose	+	+	+	-	+
Inositol	+	-	+ ^a	-	+ ^a
Sorbitol	-	-	+ ^b	_c	+
Growth on C-source					
Dulcitol	d	-	+	-	+
D-Rhamnose	+	-	-	_	-
Utilization					
Acetate	+ ^d	-	+	+	-
Succinate	+	-	+	+	+
Hydrolysis					
Starch	+	-	+	+	+
Tween 40	+	-	d	+	+
DNA	+	+	+	_	+
H ₂ S from peptone	+	+ ^b	+	-	+
Levan production		_c	+ ^e	-	+ ^e
Growth on CNSf	+	-	+	-	+
Growth on TTC ^f	+	+	-	-	-
5% NaCl	+	-	+	-	d
0.03% K-Tellurite	d	-	+	-	+
Voges-Proskauer	+ ^e	+ ^e	-	-	+ ^e
G+C (mol%) ^f	73	73	73.5	72	74
Plant host ^g	Tomato and pepper	Lucerne	Corn	Potato	Wheat
Predominant symptoms ^g	Wilt and fruit spot	Wilt and stunting	Wilt and leaf blight	Wilt and tuber rot	Leaf spot

Symbols and abbreviations: +, positive; -, negative; d, different between strains; Y, yellow; O, orange; RO, rose-orange; W, white; YW, yellowish white; and BL, blue to black somewhat diffusible pigment (indigoidine).

^{a,b,c,d,e}The opposite results were reported by Zgurskaya (1993a), Dye and Kemp (1977), Davis et al. (1984b), Vidaver and Davis (1988), and Behrendt et al. (2002), respectively, using different methods.

^fData from Carlson and Vidaver (1982). Somewhat different values of the G+C content of DNA were reported by other authors.

⁸Data from Vidaver (1982).

Adapted from Dye and Kemp (1977), Carlson and Vidaver (1982), Davis et al. (1984b), Vidaver and Davis (1988), Zgurskaya (1993a), and Behrendt et al. (2002).

The Prokaryotes (chapter 1.1.28),2006

Serological test

Immunoassay

BID Assay for *Clavibacter michiganensis* subsp. *michiganensis*

- 96-well ELISA kit, self-contained
- Cmm1 monoclonal antibody
- 10 minute boiling step for sample extraction
 - Replaced by new buffer no boiling
- Results read by eye or spectrophotometer

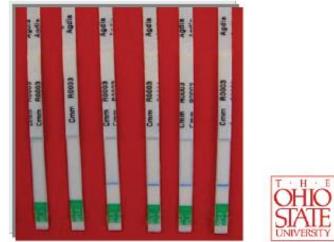
The BID ELISA test available in 2002

Miller,2006

ImmunoStrip test system Detection method

- Add approximately 3 ml of sample extract buffer to the grinding bag.
- Take a sample of plant tissue that shows symptoms.
- The plant tissue should be diluted approximately 1:20 in extract buffer.
- Rub the bag with a pen or blunt object to completely crush sample.
- Remove one strip from the packaging. When handling the strip, always grasp the top of the strip marked with the test name. Do not remove protective covering.
- Keeping the strip in a vertical position, insert the end of the strip marked "sample" into the extract.
- Do not allow much more than 0.5 cm or 1/4 inch of the end of the strip to be submerged in the extract.
- Be sure the strip remains in the extract during the test.

ImmunoStrip test system Detection method

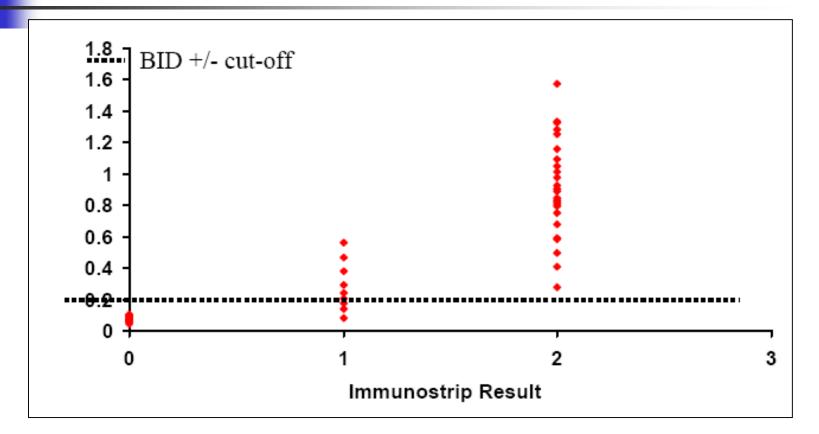

Results:

- The control line will usually appear in 3 to 5 minutes.
- Maximum reaction occurs in 20 minutes, at which time the ImmunoStrip should be removed from the buffer.
- The control line assures that the test is working properly.
- If the control line does not appear, the test is invalid.
- If the sample is positive, the test line will also appear.
- If the sample is negative, the test line will not appear.
- The test line will be red to purple in color just as the control line.
- If you wish to keep the strips as permanent records, cut off the sample pads (green ends marked "sample") and discard.

Serological test Immunostrips for Cmm

- Immunostrip format
- Cmm1 monoclonal antibody
- Test complete in <5 minutes</p>

Cmm Immunostrip Results


Negative

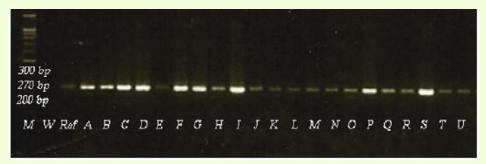
Aptin	Apdia	and a second	Apdia	Agdia	Agdia	Agein .
HeDC3	ROODA	ROOD	R0003	R0003	10003	HUNUS
5	Cmm	Com	Cme		Cmm	
				-	-	4
		-	E			
	+/-	1257	2	+	+	+

Accuracy of Cmm Immunostrip Assay

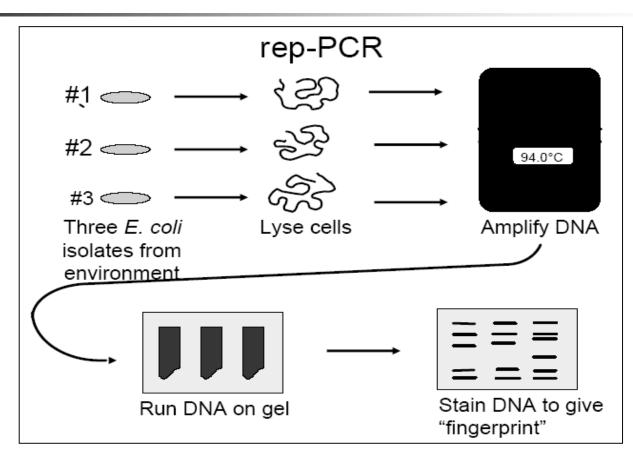
Immunostrip	Culture	Number of Samples
+	+	11
-	-	12
weak +	+	3
+	-	1
weak +	-	4

Comparison of BID-Cmm and Immunostrips for Detection of Cmm

Comparison result BID-Cmm/Cmm Immunostrip


- BID-Cmm is relatively sensitive
 - Detection limit ~ 10⁶ CFU/ml in planta
 - Fast, easy to use
- Cmm Immunostrip
 - As sensitive as BID
 - Very fast, very easy to use: suitable in field
 - No false negatives observed in field sample evaluations
 - A few false positives experimental error?

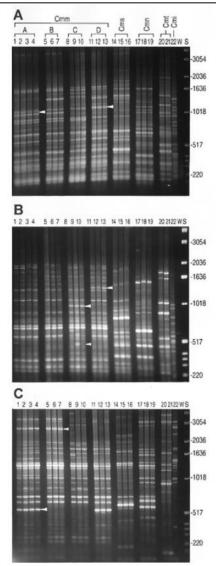
Conventional PCR


Amplification of16S-23S rDNA region space of *Clavibacter michiganensis* subsp. *michiganensis*

- Pathogen confirmation by specific PCR with primers PSA-4/PSA-R.
- Forward primer PSA-4 (5'-TCA TTG GTC AAT TCT GTCTCC C-3') and reverse primer PSA-R (5'-TAC TGA GAT GTT TCA CTT CCC C-3').
- The expected band size is 270 bp.
- M: Gen Ruler Fermantas 100-1000 bp.
- W: Water is negative control.

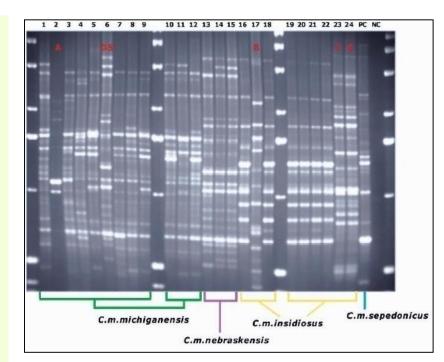
Baysal et al.,2011

Repetitive-PCR Rep-PCR

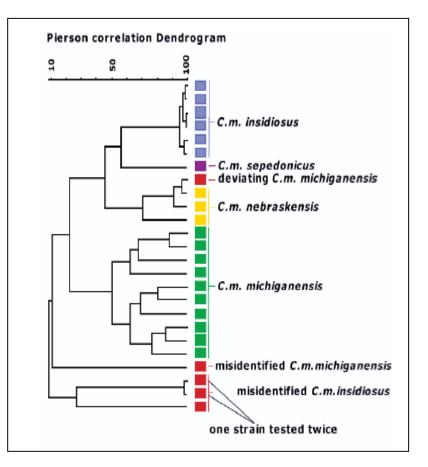


rep-PCR

A rapid and effective method to identify Clavibacter michiganensis

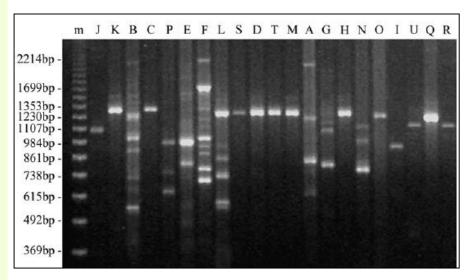

- Three rep-PCR primers (BOX, ERIC, and REP) were used for genomic fingerprinting.
- Agarose gel electrophoresis of polymerase chain reaction (PCR) fingerprint patterns obtained from strains representing five subspecies of *Clavibacter michiganensis* using primers corresponding to repetitive extragenic palindromic sequences (rep-PCR).
- A, BOX-PCR pattern,
- **B**, ERIC-PCR pattern,
- C, REP-PCR pattern.

Louws et al.,1998


rep-PCR analysis Used to discriminate several ex. subsp. of *Clavibacter michiganensis*

- BOX-PCR results for several ex. subspecies of *Clavibacter michiganensis*.
- Non-numbered lanes 1 kb DNA ladder;
- lanes 1-9 and 10-12 *C. m.* subsp. *michiganensis*;
- lanes 13-15 *C. m.* subsp. nebraskensis;
- lanes 16-18 and 19-24 *C. m.* subsp. insidiosus;
- lane 25 positive control *C. m.* subsp. sepedonicus;
- lane 29 negative control, ultra pure water.
- A, B and C = misidentified strains, strain C tested twice; DS = deviating strain of *C. m.* subsp. *michiganensis*, probably a mislabelled strain of *C. nebraskensis* (compare profiles!).

rep-PCR analysis Used to discriminate several ex. subsp. of *Clavibacter michiganensis*


- Dendrogram from data shown in previous fig., using Bionumerics software (AppliedMaths, Kortrijk, Belgium).
- There is a clear
 separation between the subspecies of
 Clavibacter michiganensis.

ISSR analysis

C. michiganensis subsp. michiganensis

- ISSR (Inter Simple Sequence Repeat) is a general term for a genome region between microsatellite loci
- A total of eight ISSR primers were used to amplify the DNA:
- (ACC)6CC, CCA(TGA)5TG, CCA(TG)7T, GCA(AC)7, (CA)8RG, (AG)8YT, GGG(AC)7 and (GA)8GG.
- Of the screened primers used to analyze isolates, the most polymorphic loci amplified were obtained from the ISSR primers (CA)8RG (This Figure).

Microsatellite loci which are widely distributed throughout the genome can be used to classify individuals by relatedness.

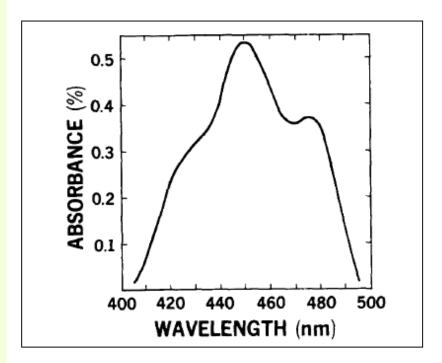
The *Clavibacter* subspecies Infection mode

- The *Clavibacter* subspecies are probably mainly wound pathogens (Strider, 1969).
- Infection of *Cm* through stomata and through hydathodes was described.
- Another important mode of transmission is through contaminated seeds (Strider, 1969).
- Infection through animal vectors was never described for the *Clavibacter* subspecies (contrasting with the infection mode of *Rathayibacter* which is associated with different nematode species like *Anguina*) although the severity of the disease can be influenced by the presence of nematodes (Hunt *et al.*,1971).

Characteristics of the genus *Curtobacterium*

- The genus comprises of six spp., of which only *curtobacterium flaccumfaciens* is considered as plant pathogenic.
- 1. Curtobacterium citreum
- 2. Curtobacterium albidum
- 3. Curtobacterium luteum
- 4. Curtobacterium pusillum
- 5. Curtobacterium herbarium
- 6. Curtobacterium flaccumfaciens
- The five recognized pathovars of *Curtobacterium flaccumfaciens* are:
- 1. pv. betae
- 2. pv. *flaccumfaciens*
- 3. pv. *ilicis*
- 4. pv. *oortii*
- 5. pv. *poinsettiae*.

Characteristics of the genus *Curtobacterium*

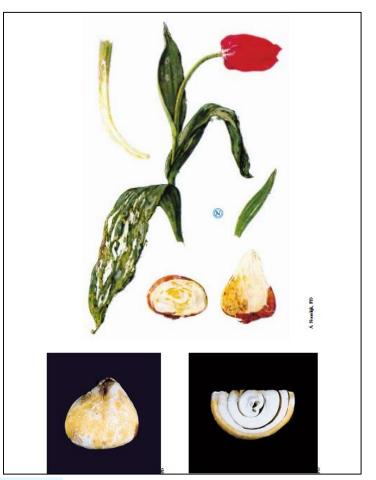

- Colonies of both pathogenic and non-pathogenic curtobacteria on nutrient agar are yellow, orange or ivory, shiny, slightly convex and round, with entire margins.
- The exception is with *C. albidum* and *C. pusillurn* which produce white colonies.
- All yellow pigmented curtobacteria produced β-carotene on tryptic soy agar.
- Colonies grown on nutrient dextrose agar ranged in diameter from 2 mm (*C. luteurn*) to 12 mm (*C. albidum*).
- *C. albidum* and *C. luteurn* are known antagonists against plant pathogenic fungi.

Test for carotenoid pigments in *Curtobacterium* spp. β-carotene

- The test bacteria were grown for 5 days on tryptic soy agar.
- Cells were washed from the plate with methanol and suspended in 10 ml of methanol for 30 min.
- Cells were removed by centrifugation, and the supernatant was added to a cuvette for spectrophotometric analysis.
- A β-carotene (Sigma Chemical Co., St. Louis, Mo.) standard was used for comparison with the bacterial product and consisted of a few crystals of β-carotene dissolved in 10 ml of methanol.
- β-Carotene in methanol gives an absorbance maximum at 447 nm (Goodwin, 1980).

Test for carotenoid pigments β-carotene

- Absorption spectrum of β-carotene in methanol.
- The β-carotene was produced by yellowpigmented
 Curtobacterium spp.
- This spectrum was identical to that of purified β-carotene.



Characteristics typical of the genus *Curtobacterium*

- Gram positive, nonsporeforming cells usually move by means of lateral flagella.
- Cells are small, irregular, unbranched rods, tending to become shorter in the older culture.
- Obligately aerobic, catalase positive, chemoorganotrophic, mesophilic, and capable of growth on a nutrient agar and related media.
- Growth usually occurs at 5% NaCl but not at 10% NaCl.
- Acid is produced rather slowly and weakly from carbohydrates.
- The species differentiation is based on:
- Growth characteristics,
- Content of G+C of DNA,
- Fatty acid composition, and
- Some physiological properties.

Yellow pustule and hellfire *Curtobacterium flaccumfaciens* pv. *oortii*

- Top: Leaf symptoms: silver grey stripes and cracks along the main vein (called hell fire) and yellow pustules on the outer white scales of the bulbs. Yellow discoloration of the vascular tissue in stems and bulbs. Colour drawing.
- Bottom: Natural tulip infection.
- Pustules on outer scale (left) and yellow discoloration of vascular and surrounding tissue of outer scale (right).

Janse,2006

Characteristics that differentiate species of the genus *Curtobacterium*

Table 5a. Characteristics that differentiate species of the genus Curtobacterium. ^a							
Characteristics	C. albidum	C. citreum	C. flaccum-faciens ^b	C. herbarum	C. luteum	C. pusillum	
Motility	_	+	+	+	+	+	
Colony color	Ι	Y	Y/O	Ο	Y	LY	
DNAse	_	_	W	_	_	_	
Hydrolysis of							
Casein	+	_	d	$+d^{c}$	_	_	
Esculin	+	+	+	+	_	+	
Gelatin	+	-	d	$+d^{c}$	-	+	
Starch	_	_	d	_	_	_	
Tween 80	+	_	d	+	+	_	
Acid from							
Adonitol	_	_	+	_	+	+	
Raffinose	+	_	+	+	_	+	
L-Rhamnose	+	+	d	$-d^{c}$	+	+	
D-Sorbitol	_	_	+	+	_	_	
Cyclohexylundecanoic fatty acid ^d	_	_	_	_	_	+	
G+C (mol%) ^e	70	70.5	68.3–68.5	71	69.8	69.3	

Symbols and abbreviations: +, positive; –, negative; w, weakly positive; d, differs among strains; nd, not determined; colony color on nutrient agar II (SIFIN): I, ivory; Y, yellow; O, orange; and LY, light yellow.

^aTable is based on the data reported by Behrendt et al. (2002). The type strain of *Curtobacterium plantarum* (Dunleavy, 1989) does not belong to the genus *Curtobacterium* (DSMZ, Catalogue of Strains), and this species is not included in the Table. ^bCharacteristics that differentiate pathovars of the species *C. flaccumfaciens* are given in Table 6.

"Reaction of the type strain is positive (+d) or negative (-d)."

^dData from Suzuki and Komagata (1983).

^eData from Yamada and Komagata (1970), exept for the data for *C. herbarum* taken from Behrendt et al. (2002); somewhat higher values of G+C content were reported by Döpfer et al. (1982).

The Prokaryotes (chapter 1.1.28),2006

Characteristic	Curt. flac. pv. betae	Curt. flac. pv. laccumfaciens	Curt. flac. pv. ootrii	Curt. Flac. pv. poinsettiae
Colony color, NBY agar	Y	Y/O/P	Y	0
Cell wall sugar				
Galactose	_	+	_	+
Glucose	_	_	+	w
Fucose	+	_	+	_
Hydrolysis of				
Gelatin	_	+ ^b	+ ^b	$-/d^{c}$
Casein	_	+	+	$+/d^{c}$
DNAse	_	+	_	_
β-Galactosidase (pH 7)	+	d	d	_
Cystin arylamilase (pH 8.5)	d	d	_	_
Acid from L-rhamnose	+	+	+	_b
Acid from p-sorbitol	+	d	d	+
Assimilation of				
Acetate	+	+	_	+
Fumarate	_	+	_e	+ ^f
Propionate	_	_	_	+ ^e
KCN-tolerance, 0.0075% (w/v)	+ ^b	+	+	_
Production of H ₂ S	+	+	+	_
Max. temperature for growth (°C)	37	37	37	34-35
G+C (mol%) ^g	73.7	72.2	72.2	72.5
Plant host ^h	Beet	Bean	Tulip	Poinsettia
Predominant symptoms ^h	Silvering of leaves; wilt	Wilt	Leaf, bulb spot; wilt	Leaf spot; wilt

Abbreviations: w, weak or questionable; and for other definitions, see footnote in Table 5a.

^aAccording to Carlson and Vidaver (1982) and Vidaver and Davis (1988), the pathovars of *Curtobacterium flaccumfaciens* should be classified as separate subspecies (see the text).

^bThe opposite result was reported by Day and Kemp (1977) using different methods.

^cDifferent results between strains (Behrendt et al. 2002).

^{d,e,f}The opposite results were obtained by Behrendt et al. (2002), Davis et al. (1984b), and Carlson and Vidaver (1982), respectively, using different methods.

^gData from Döpfer et al. (1982).

^hData from Day and Kemp (1977) and Vidaver (1982).

The Prokaryotes (chapter 1.1.28),2006

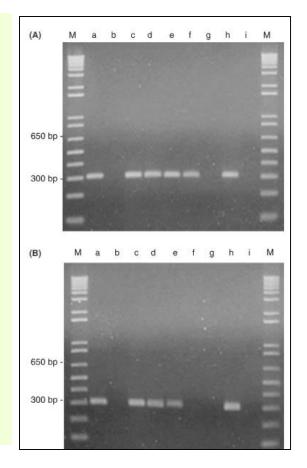
Additional characteristics differentiate species of the genus *Curtobacterium* Continued

Table 5b. Additional characteristics that differentiate *Curtobacterium albidum*, *C. citreum*, *C. flaccumfaciens*, *C. luteum* and *C. pusillum*.

Characteristics	C. albidum ^a	C. citreum	C. flaccum- faciens ^b	C. luteum ^a	C. pusillum
Colony color	Ι	DuY	Y/O/P	DaY	PY/GW
Assimilation of					
Lactic acid	+	+	+	_	+
Malic acid	_	+	+	+	_
Fumaric acid	+	+	+	+	d
α-Ketoglutaric acid	_	+	_	_	_
Citric acid	+	d	+	_	_
Glyoxylic acid	+	+	_	_	_
Gluconic acid	+	+	+	+	_

Abbreviations: I, ivory; DuY, dull yellow; DaY, dark yellow; Y, yellow; O, orange; P, pink; PY, pale yellow; GW, grayish white (colony color on nutrient agar); for other definitions see footnote in Table 5a.

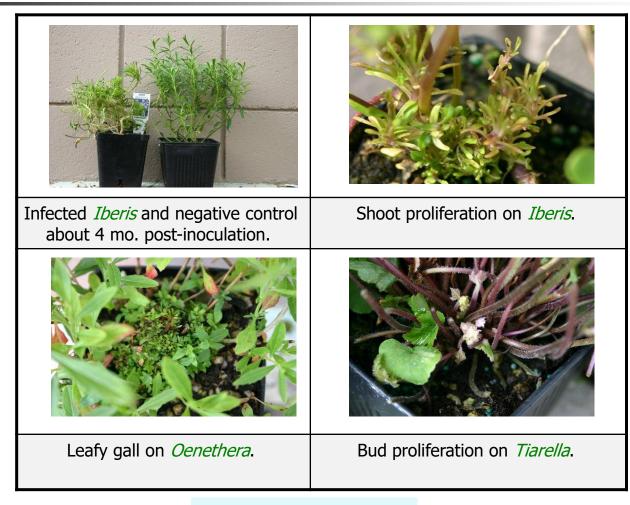
^aData for type strain only.


^bData for *C. flaccumfaciens* pv. *flaccumfaciens* and *C. flaccumfaciens* pv. *poinsettiae* only; characteristics that differentiate all pathovars of the species *C. flaccumfaciens* are given in Table 6.

Data from Yamada and Komagata (1972a; 1972b) and Komagata and Suzuki (1986).

Specific PCR amplification

Curtobacterium flaccumfaciens pv. flaccumfaciens


- Gel electrophoresis of the PCR products obtained with the primers CffFOR2 and CffREV4, using as template DNA extracted with either (A) the Instagene Matrix (Biorad) or (B) the Puragene DNA Isolation Kit (Gentra) from:
- (Lane a) soakings of bean seeds naturally infected with *Curtobacterium flaccumfaciens* pv. *flaccumfaciens* (Cff),
- (b) soakings of healthy bean seeds,
- (c-g) soakings of healthy bean seeds artificially contaminated with 10⁵-10¹cells ml⁻¹of Cff strain ICMP 2584,
- (h) Cff strain ICMP 2584;
- (i) negative control with sterile distilled water.
- (M) 1 Kb plus DNA ladder

Characteristics of the genus Rhodococcus

- Large genus with a single pathogenic sp. (*R. fascians*).
- Can be damaging to some horticultural crops.
- Pathogenicity associated with a plasmid.
- Other *Rhodococcus* spp. are often abundant on plant surfaces and in soil.
- Can be difficult to differentiate *R. fascians* from other spp.

Disease symptoms caused by Rhodococcus fascians

Sandberg *et al.*,2011

Characteristics of *Rhodococcus fascians*

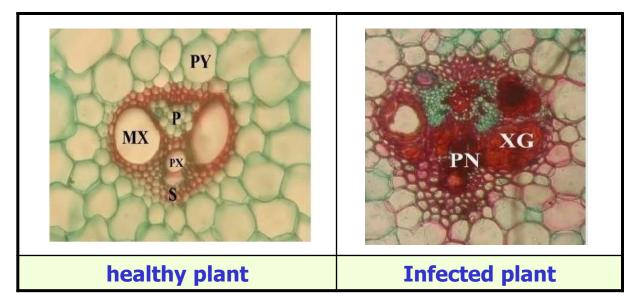
- Gram positive, aerobic bacterium.
- The only phytopathogen within its genus.
- Pleiomorphic
- Strains used in this experiment were extremely virulent: they produce dramatic symptoms on a wide range of hosts.

Characteristics of the genus Leifsonia

- The genus Leifsonia (Evtushenko et al.,2000) was proposed for:
- Leifsonia poae
- Isolated from *Poa annua* root galls induced by the grass root-gall nematode *Subanguina radicicola*.
- Two pathogenic Leifsonia (Clavibacter) spp. are:
- 1. Leifsonia (Clavibacter) xyli subsp.xyli
- 2. Leifsonia (Clavibacter) xyli subsp.cynodontis

Etymology: Leif.so'ni.a N.L. fem. n. *Leifsonia*, named after Einar Leifson, who isolated and described the first organism of this genus (Euzeby, 2020)

Internal nodal caused by RSD


- RSD produces no visible symptoms other than stunting.
- The only other visible symptoms are redorange dots or commas in the vascular traces in the nodal tissue (which can be seen when stalks are sliced with a sharp knife).

Cross section of vascular bundles RSD

- A: Histological changes in the vascular bundles of the stalks of sugar cane that infected with the isolated bacteria as shown in the cross sections of the lower part of the node.
- B: The cross section of the healthy plant.

Ibrahim and coworkers

Isolation Culture media

- Different media based on glucose, peptone and yeast extract are appropriate for cultivation of the rapidly growing organisms of the genus *Leifsonia*.
- Successful isolation of these two pathogens requires surface sterilization of plant material and other precautions to avoid or reduce the growth of saprophytes.
- The xylem-inhabiting bacteria can be isolated from affected vascular bundles at the nodes, which are usually inhabited by bacteria in the infected plant.
- Under the microscope, affected bundles appear plugged with bacteria contained in a colored gummy substance.
- SC medium is used for growing of Leifsonia xyli subsp. cynodontis and Leifsonia xyli subsp. xyli.

Isolation and cultivation of *Leifsonia xyli* **SC medium**

- The successful isolation of slowly growing plant pathogens of the genus *Leifsonia* from diseased plants require culture- amendment.
- Extracts of Bermuda grass and maize, as well as xylem fluid collected from maize plants, enhance the growth of *Leifsonia xyli* subsp. *Cynodontis.*
- The growth was enhanced even with 1% (v/v) maize xylem sap in a rich culture medium, giving both an increased growth rate and a higher stationary phase cell density.

•	Cornmeal agar	17 g/L
•	Papaic digest of soy meal (or phytone p	peptone
	or soytone)	8 g
•	K ₂ HPO ₄	1 g
•	KH ₂ PO ₄	1 g
•	MgSO ₂ .7H ₂ O	0.2 g
•	Water	1 liter
•	Bovine hemin chloride	15 mg
•	Bovine serum albumin (20% solution),f	raction V
		2 g
•	Glucose (50% solution)	0.5 g
•	Cystcine (10% solution)	1 g
•	The 15 mg of bovine hemin chloride is 0.1% bovine hemin chloride in 0.05N N	
•	The bovine serum albumin (20%), gluc (50%) and cysteine (10%) solutions sh	
	filter sterilized and then 10, 1 and 10 m	•
	respectively, added to the sterilized mo	Iten

• The pH is then adjusted to 6.6.

medium at 50°C.

Salient phenotypic characteristics of *Leifsonia*

- The species differentiation is based on:
- 1. Growth;
- 2. Morphological and physiological characteristics;
- 3. Cell wall sugar composition;
- 4. Menaquinone pattern.

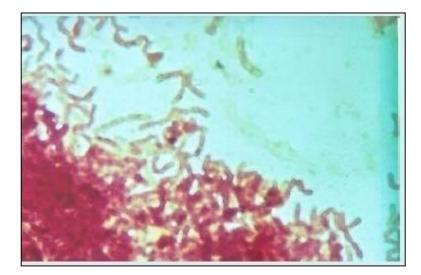
Vitamin K_1 (phylloquinone) and Vitamin K_2 (menaquinone) is normally produced by bacteria.

Salient phenotypic characteristics of *Leifsonia*

 Salient phenotypic characteristics that differentiate *Leifsonia* gen. nov. from other genera containing DAB in their peptidoglycan.

Genus	Morphology	Motility	Major menaquinone	Peptidoglycan amino acid*	Polyamine pattern	Total polyamine (μmol g ⁻¹)	Growth at 18 °C
Leifsonia gen. nov.	R, F	+	MK-11, 10	DL-DAB	PUT	0.6	+
Agromyces	F, R	_	MK-12	l-DAB	PUT	0.2-0.3	+
Clavibacter	R	_	MK-9	dl-DAB	SPD, SPM	2.0 - 7.0	+
Rathayibacter	R	_	MK-10	l-DAB	SPD, SPM	$4 \cdot 8 - 18 \cdot 0$	+
Cryobacterium	R	_	MK-10	l-DAB	ND	ND	_
Leucobacter	R	_	MK-11	l-DAB, GABA	ND	ND	+
Agrococcus	С	_	MK-12, 11	L-DAB, Asp, Thr	SPM	0.9	+

The table is based on the data obtained in this study and extracted from relevant references (see text). R, Rods; F, Fllaments; C, cocci ; +, positive ; -, negative; DL-DAB, d and L isomers of diaminobutyric acid; GABA, *c*-aminobutyric acid; Asp, asparagine; Thr, threonine; PUT, putrescine; SPM, spermine; SPD, spermidine; nd, no data.

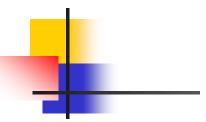

A **polyamine** is an organic compound having two or more primary amino groups-NH₂

Morphological and biochemical characteristics Leifsonia

- Organisms of the genus *Leifsonia* usually form yellow, yellowish-white, white or brownish-white colonies, which are circular, somewhat convex, glistening, opaque, and butyrous.
- Cells are nonspore forming, irregular rods, usually fragmenting into shorter rods or coccoid elements.
- Filaments and primary branching occur in young cultures of some species.
- Organisms are usually motile, mesophilic, obligately aerobic, and catalase positive.
- Oxidase test is variable among species.

Bacterial cells *Leifsonia xyli* subsp. *xyli*

 The reisolated bacteria from the cultivated infected plant.

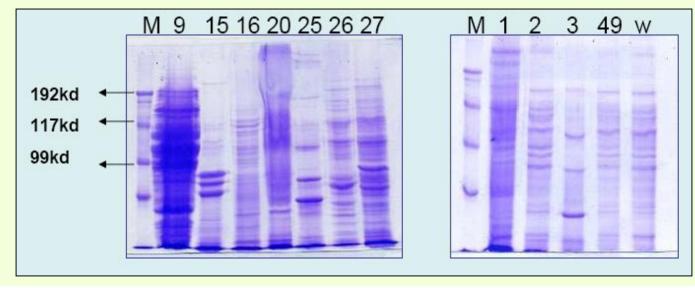

Ibrahim and coworkers

Characteristics that differentiate species of the genus *Leifsonia*

Characteristics	L. aquatica	L. nagano-ensis	L. shinshu-ensis	L. poae	L. xyli subsp. xyli	L. xyli subsp. cynodontis
Colony color	Y	W, PB	W, PB	PY, Y	W, PY	PY, Y
Growth on R agar	+	+	+	+	_	_
Visible colonies, day	2	2	2	2	7–10	5–7
Cell width (μ m)	0.4-0.7	0.3-0.5	0.3-0.4	0.4-0.8	0.2	0.2-0.3
Cell length (μ m)	1.2-2.5	1.8-3.0	2.5-3.0	1.5-8.0	5.0	3.0-6.0
Fucose in the cell wall	+	ND	ND	_	+	+
Utilization of						
Citrate	+	_	_	_	_	+
Gluconate	+	_	_	_	_	_
Propionate	+	-	+	+	_	_
Acid from						
D-Galactose	+	+	-	+	-	-
Salicin	+	+	_	+	_	_
D-Sucrose	W	+	-	+	-	_
Glucose	+	+	_	+	+	+
Mannose	+	+	-	+	W	+
Melibiose	_	+	-	_	_	_
Inulin	_	-	+	_	_	_
Hydrolysis of starch	+	+	+	_	_	+
Growth at NaCl, 5%	+	_	_	_	_	_
Major menaquinone, MK	11, 10	11, 10	11, 12	11, 10	ND	11, 12
G+C (mol%)	70	71	71	69	66	69
Source of isolation	Distilled water	Soil	Soil	Root gall on Poa annua	<i>Saccharum</i> , interspecific hybrid	Cynodon dactylon

Symbols and abbreviations: +, positive; –, negative; w, weakly positive; ND, not determined; W, white; Y, yellow; PB, pale brown; PY, pale yellow; for other definitions see footnote in Table 1. Data from Davis et al. (1984b), Suzuki et al. (1999), and Evtushenko et al. (2000).

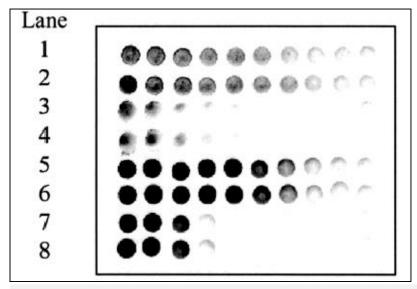
The Prokaryotes (chapter 1.1.28),2006


Phenotypic differences between strains **VKM Ac-1401T**, `Corynebacterium aquaticum' and Leifsonia xyli subspecies.

Character	VKM Ac-1401 [™]	'Corynebacterium aquaticum' VKM Ac-1400 ^T	Clavibacter xyli subsp. xyli*	Clavibacter xyli subsp. cynodontis*
Cell width (µm)	0.6-0.9	0.4-0.2	0.2	0.2-0.3
Cell length (µm)	8.0-12.0	1.2-2.5	5.0	3.0-0.0
Visible colonies (day)	2	2	7-10	5-7
Colony colour	Yellow	Yellow	White	Yellow
Growth on CB agar	+	+	_	-
Fucose in the cell wall	-	+	+	+
Oxidase	-	+	_	-
Production of H ₂ S	-	+	_	-
Voges-Proskauer test	+	_	_	+
Methyl red test	+	_	_	+
Utilization of:				
Citrate	_	+	_	+
Gluconate	_	+	_	_
Propionate	+	+	_	_
Hydrolysis of:				
Starch	_	+	_	+
Aesculin	+	_	_	_
Gelatin	+	_	_	_
Growth in 5% NaCl	_	+	_	_
Acid from:				
p-Arabinose	+	+	_	_
p-Galactose	+	+	_	_
Salicin	+	+	_	_
D-Sucrose	+	+	_	_
Used as C-source for growth:				
Adonitol	_	+	ND	ND
L-Arabinose	+	_	ND	ND
Inositol	_	+	ND	ND
Melezitose	_	+	ND	ND
Raffinose	+	_	ND	ND
L-Sorbose	_	+	ND	ND
Tolerance to antibiotics (µg m	[-1].		ND .	ND
Chloramphenicol (10)	·)	+	ND	ND
Doxycycline (5)	_	+	ND	ND
Erycycline (10)	_	т _		
Gramicidin (50)	_	+	ND	ND
Rifampicin (30)	_ _	+	ND	ND ND
Major menaquinones	+ MK-11		ND ND	MK-11, 12 [†]
Source of isolation	Nematode gall on P. annua roots	Distilled water	ND Saccharum, interspecific hybrid	Cynodon dactylon

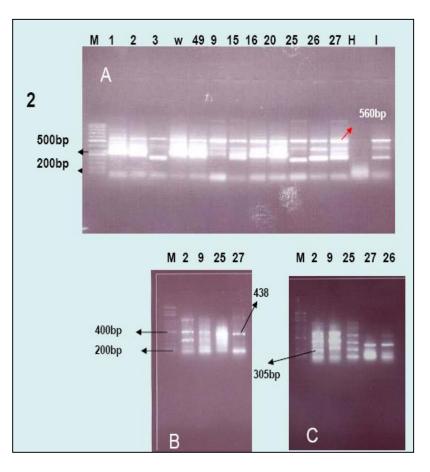
Evtushenko et al.,2001

Protein analysis *Leifsonia xyli* subsp. *xyli*


 Protein profile of the bacterial isolates of LXX that were used in the injection of the mouths (the name of isolates is written above it and the molecular masses of the marker are written beside it.

Ibrahim and coworkers

Dot blot assay Leifsonia xyli subsp. xyli


- Lane 1 and 2, 2-fold dilution in sugarcane juice (CP72-1210),
- Lane 3 and 4, 10-fold dilution in reaction buffer,
- Lane 5 and 6, 2-fold dilution in sugarcane juice (CP87-3388);
- Lane 7 and 8, 10-fold dilution in sugarcane juice (CP87-3388).

Nitrocellulose membrane submitted to the standard colorimetric dot blot ELISA.

PCR detection *Leifsonia xyli* subsp. *xyli*

- The primers used were:
- A. L1&G1,
- B. Cxx1 and Cxx2 that give
 438 bp PCR product.
- c. ITSf#5 and ITSr#5 that give 305 bp PCR product.
- DNA marker used in A was 50bp and in both B&C was 100 bp ladder.

Characteristics of the genus Endophytic bacteria *Plantibacter*

- Phenotypically close to the *Rathayibacter*.
- Isolated from grass phyllosphere and surface litter after mulching the sward.
- The genus *Plantibacter* is characterized by aerobic, nonsporeforming, nonmotile irregular cells.
- Oxidase test varies between the species.
- Plantibacter agrosticola sp. nov., Plantibacter elymi sp. nov., and Plantibacter cousiniae sp. nov. isolated from plant galls induced by three different nematodes of the subfamily Anguininae.
- CNS medium or a modified CNS medium without lithium chloride was successfully used for isolation of endophytic bacteria, including *Plantibacter*.

Characteristics that differentiate the genera *Plantibacter* and *Rathayibacter*

Characteristic	Plantibacter	Rathayibacter		
Colony color	Yellow	Yellow, pink-orange		
Major menaquinone	MK-10 / MK-9, 10 / MK-10,11	MK-10		
Cytochrome oxidase	aa_3	bb_3 / bb_3 , and aa_3		
Quinole oxidase	$bo_3 / bb_3 / none$	None		
Polyamine pattern	Spermine, and 1,3-diaminopropane	Spermine, and spermidine		
Polyamine (total amount, µmol·g ⁻¹)	1.3–1.43	4.8–18.0		
Plant host/nematode	Agrostis sp. / Anguina agrostis;	Festuca rubra / Anguina graminis;		
vector ^b	Elymus repens / Anguina agropyri;	Dactylis glomerata / Anguina sp.;		
	Cousinia onopordioides /	Triticum aestivum / Anguina tritici;		
	Mesoanguina picridis	Lolium rigidum / Anguina funesta;		
		Agrostis avenacea / Anguina sp.;		
		Polypogon monspeliensis / Anguina sp.;		
		Carex sp. / Heteroanguina caricis (?)		
Other sources	Grass phyllosphere, surface litter after mulching the sward, agronomic crops, and rhizosphere of potato	No data on properly identified rathayibacteria		
	also differ in FT-IR spectra (Behrendt et al., 200)2).		
^b See Tables 14, 15 and th				
Data from Sabet (1054)	Gupta and Swarup (1072) Price et al. (1070)	Riley (1987), Riley and McKay (1990), Riley and		

The Prokaryotes (chapter 1.1.28),2006

Characterictics that differentiate *Plantibacter* species

Characteristic	P. flavus	"P. agrosticola"	"P. elymi"	"P. cousiniae"
Fucose in cell wall	ND	-	-	+
Oxidase test	-	+	+	+
Cytochrome oxidase	ND	aa_3	aa_3	aa_3
Quinole oxidase	ND	bb_3	bo_3	_
Heme O	ND	_	+	_
Major menaquinone	MK-10,11	MK-9, 10	MK-9, 10	MK-10
Iso-16:0 Me (%) ^a	_ `	1,53	3,74	2,89
Hydrolysis				
Starch	d	d	+	+
Hypoxanthine	ND	_	d	+
Xanthine	ND	-	d	+
Tween 80	+	+	d	-
Methyl red test	ND	_	d	+
Growth at 6% NaCl	_	d	d	+
$G+C \pmod{8}$	68–70	67.2	66.5	67.8
Source	Grass phyllosphere, and surface litter after mulching the sward	Agrostis sp. ^b	Elymus repens	Cousinia onopordioide
Location of gall	ND	Seed	Stem	Leaf
Nematode vector	ND	Anguina agrostis	Anguina agropyri	Mesoanguina picridis

Symbols and abbreviations: +, positive reaction; -, negative; d, different among strains; ND, not determined.

^aInferred on the basis of retention time.

^bMost probably Agrostis capillaris L. (S. A. Subbotin, personal communication).

Data from Evtushenko et al. (1994; unpublished), Behrendt et al. (2002), and Trutko et al. (2003).

The Prokaryotes (chapter 1.1.28),2006

Fatty acid analysis Gram positive plant pathogenic bacteria

	15:0 ISO	15:0 ANTEISO	15:1 ANTEISO A	17:0 ANTEISO	10 Methyl 18:0	18:1 ù9cis
lacillus	+	+				
lavibacter	+	+	+	+		21
Curtobacterium	+	+		+		(+)
athayibacter	+	+	(+)	+		
hodococcus					+	
Many Gram positive pl = thought to occur in a +) = occurs in some tax	all strains	such as Bacillus spp., Ar	throbacter spp. and Curto	bacterium spp. have ver	y similar fatty acids in the	eir profiles.

Prediction of Gram positive genera of plant pathogenic bacteria based on fatty acids.

15:1 anteiso A is a chemotaxonomic marker for *Clavibacter*

PCR Primers for coryneforms

Schaad et al.,2001

Sec. 18-14	Primer		Size
Specificity	Designation	Sequence	(bp)
Species	CMR16F1	(5'GTGATGTCAGAGCTTGCTCTGGCGGAT3')	1,500ª
michiganensis	CMR16R1	(5'GTACGGCTACCTTGTTACGACTTAGT3')	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	CMR16F2	(5'CCCCGACTCTGGGATAACTGCTA3')	1,300*
	CMR16R2	(5'CGGTTAGGCCACTGGCTTCGGGTGTTACCGA3')	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
subsp.	CMM5	(5'GCGAATAAGCCCATATCAA3')	614 ^b
michiginensis	CMM6	(5'CGTCAGGAGGTCGCTAATA3')	
sepedonicus	Sp1f	(5'CCTTGTGGGGTGGGAAAA3')	215
	Sp5r	(5'TGTGATCCACCGGGTAAA3')	=10
sepedonicus	CMS6	(5'CGCTCTCCCTCACCAGACTC3')	258
	CMS7	(5'TCCCGTGCTTGCCTGCGTTG3')	200
sepedonicus	Cms50F	(5'GAGCGCGATAGAAGAGGAACTC3')	224
	Cms50R	(5'CCTGAGCAACGACAAGAAAAATAG3')	
	Cms72F	(5'AGTTCGAGTTGATAGCAATCCGC3')	247
	Cms72R	(5'GTGTCTCGGATTCACGATCACC3')	
	Cms85F	(5'AAGATCAGAAGCGACCCGCC3')	232
	Cms85R	(5'TCGCACAGCCAAATCCAGC3')	
sepedonicus	A47A	(5'CACCCCTCGACTGCGAGAAACG3')	670
	A47B	(5'TCCTCCGAGACTTTCGGGACGC3')	
sepedonicus	CSRSC	(5'GGCCATGACGTTGGTGACAC3')	1054°
sepedonicus	Cms50-2F	(5'GGCAGAGCATCGCTYCAGTACC3')	NA
	Cms133-R	(5'CGGAGCGCGATAGAAGAGGA3')	
	TaqMan	(5'-FAM-AAGGAAGTCGTCGGATGAAGATGGG-	
	Probe	TAMRA-3')	
subsp. xyli	CxxITSf#5	(5'TCAACGCAGAGATTGTCCA3')	305
	CxxITSr#5	(5'GTACGGGCGGTACCTTTTC3')	
cynodontis/xyli	CxFOR	(5'AAGGAGCATCTGGCACCCT3')	446
	CxxREV	(5'AGGATTCGGTTCTCATCTCA3')	
	CxFOR	(5'AAGGAGCATCTGGCACCCT3')	278
	CxcREV	(5'GAATCGATCGGCGTCTCCTC3')	
subsp. <i>xyli</i>	Cxx1	(5'CCGAAGTGAGCAGATTGACC3')	438
	Cxx2	(5'ACCCTGTGTTGTTTTCAACG3')	
xyli	RSD33	(5'CTGGCACCCTGTGTTGTTTTC3')	265
	RSD292	(5'TTCGGTTCTCATCTCAGCGT3')	0.00000
	RST60	(5'TCAACGCAGAGATTGTCCAG3')	220
	RST59	(5'CGTCTTGAAGACACAGCGATGAG3')	229
R. fasciens	JRERIGHT	(5'CGGGATCCATATCGAACCGCCCTC3')	225
	JRELEFT	(5'GGGAATTCCGACCGTATCCAGTGT3')	440

* Estimated value.

^b Avirulent strains are negative.

6 Gives same 1054 bp product with C. michiganensis subsp. insidious.

NA, not applicable

Name of primers and target DNA, sample treatment in the original article, variant of PCR protocol, reference and observations for plant pathogenic bacteria according to ISPP nomenclature. When the nomenclature reported in articles differs, the originally cited names of side of the table bacteria are indicated on the right

Genus *Clavibacter*

		G	enus Clavibacter		
Species/subspecies	Primer name Target DNA	Variant of PCR protocol	Sample (treatment)	Reference	Synonyms/observations
<i>Clavibacter</i> and <i>Rathayibacter</i> (genus specific)	R16FO/CBR16R1 + CBR16F2/CBR16R2 16S rDNA	Nested	Bacteria (DNA extraction)	Lee <i>et al.,</i> 1997a	Restriction enzyme analysis required for differentiation species and subspecies inside both genera.
C. michiganensis subsp. insidiosus	CIRS-1/CIRS2 Insertion element	Conventional	Plant tissue and seeds (DNA extraction)	Samac <i>et al.,</i> 1998	
C. michiganensis subsp. michiganensis	CMM-5/CMM-6 Pat-1 gene plasmid DNA	Conventional	Plant tissue and seeds (DNA extraction) bacteria (boiled)	Dreier <i>et al.,</i> 1995	
C. michiganensis subsp. michiganensis	CM3/CM4 DNA fragment from a cloned pathogenic isolate	Conventional	Bacteria, seeds (alkaline lysis and boiled)	Santos <i>et al.,</i> 1997	
C. michiganensis subsp. michiganensis	CMM5/CMM6 Pat-1 gene plasmid DNA PSA-4/PSA-R 16S-23S rDNA spacer region	Conventional	Bacteria (boiled)	Anon., 2005a; Milijasevic <i>et al.,</i> 2006	Recommended in the EPPO protocol.
C. michiganensis subsp. michiganensis	CMM-5/CMM-6 Pat-1 gene plasmid DNA	Conventional	Bacteria (DNA extraction)	Hadas <i>et al.,</i> 2005	

Name of primers and target DNA, sample treatment in the original article, variant of PCR protocol, reference and observations for plant pathogenic bacteria according to ISPP nomenclature. When the nomenclature reported in articles differs, the originally cited names of side of the table bacteria are indicated on the right

	CM3/CM4 DNA fragment from a cloned pathogenic isolate	BIO			
C. michiganensis subsp. sepedonicus	A47A/A47B CS1 plasmid sequence fragment	Conventional	Bacteria (untreated)	Firrao and Locci, 1994	
C. michiganensis subsp. sepedonicus	CMS-6/CMS-7 CS1 plasmid sequence fragment	Conventional Competitive (<i>Arabidopsis</i> genomic DNA as internal standard)	Plant tissue (DNA extraction)	Schneider <i>et al.,</i> 1993 Hu <i>et al.,</i> 1995	Both authors used the same primers but the second protocol can be quantitative.
C. michiganensis subsp. sepedonicus	Spif/Sp5r 16S-23S rDNA spacer region	Conventional	Bacteria, potato tubers (DNA extraction)	Li and De Boer, 1995	
C. michiganensis subsp. sepedonicus	CSRS-C Inverted repeat plasmid CS1	Conventional	Bacteria, plant tissue (alkaline treatment)	Slack <i>et al.,</i> 1996	
C. michiganensis subsp. sepedonicus	Nested CMSIF1/CMSIR1 + CMSIF2/CMSIR2 Insertion element	Nested	Bacteria, potato tubers (DNA extraction)	Lee <i>et al.,</i> 1997b	
C. michiganensis subsp. sepedonicus	CMS50F/CMS50R CMS72F/CMS72R CMS85F/CMS85R Three primer sets for single or multiplex PCR Chromosomal DNA (unknown)	Conventional Multiplex	Bacteria, potato tubers (DNA extraction)	Mills <i>et al.,</i> 1997	
C. michiganensis subsp. sepedonicus	Primers Cms 50-2F/Cms 133R Chromosomal DNA (unknown) Probe Cms 50-53T	Real-time (TaqMan) BIO+TaqMan	Bacteria (untreated)	Schaad <i>et al.,</i> 1999	BIO implies enrichment in solid medium.
C. michiganensis subsp. sepedonicus	PSA-1/PSA-R 16S-23S rDNA spacer region NS-7-F/NS-8-R DNA from potato, eggplant and tomato	Conventional Multiplex (Coamplification of host DNA as internal control)	Bacteria (untreated), potato tissue (DNA extraction)	Pastrik, 2000	

Name of primers and target DNA, sample treatment in the original article, variant of PCR protocol, reference and observations for plant pathogenic bacteria according to ISPP nomenclature. When the nomenclature reported in articles differs, the originally cited names of side of the table bacteria are indicated on the right

	C C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	See: Schneider et al., 1993;				
	Firrao and Locci, 1994, Li	Conventional			
C. michiganensis subsp.	and De Boer, 1995, Slack			Anon., 2006b	Recommended in the EPPO protocol
sepedonicus	et al., 1996, Mills et al.,	Real-time		· · · · · · · · · · · · · · · · · · ·	
	1997, Schaad et al., 1999;	(TaqMan)			
	Pastrik, 2000				
	CMR16F1/CMR16R1				
C. michiganensis	+	Nested	Bacteria, potato		
subspecies: insidiosus,	CMR16F2/CMR16R2		tubers (DNA	Lee et al., 1997b	Restriction analysis required for differentiation of C.
michiganensis sepedonicus,	16S rRNA gene		extraction)	Lee et al., 1997b	michiganensis subsp. sepedonicus.
nebraskensis, tessellarius			extraction)		
	CMR16F1/CMR16R1	Conventional			
	Universal all subspecies				
	PAS-R/		Bacteria (DNA	Pastrik and	<i>C. michiganensis</i> subsp. <i>insidiosus</i> and <i>nebraskensis</i> vield same band. RAPD-PCR for distinguishing
	Subspecies-specific	Conventional			
	PSA-1 (C. m. subsp.				
	sepedonicus)				
	PSA-4 (C. m. subsp.				
C. michiganensis	michiganensis)				
subspecies: insidiosus,	PSA-5 (C. m. subsp.				
michiganensis sepedonicus,	insidiosus)		extraction)	Rainey, 1999	subspecies.
nebraskensis, tessellarius	PSA-2 (C. m. subsp.				
	tesalarius)				
	PSA-7 (C. m. subsp.				
	nebraskensis)				
	16S-23S rDNA spacer				
	region				
	Primers				
	FP Cm/RP Cm				
	Common ITS in all				
C. michiganensis	subspecies				
subspecies: insidiosus,	Subspecies specific probes	Real-time	Bacteria (DNA		
michiganensis sepedonicus,	Cms probe	(TaqMan)	extraction)	Bach et al., 2003	
michiganensis sepeaonicus, nebraskensis, tessellarius	Cms probe	(Taqivian)	extraction)		
neoraskensis, tesseuarius	Cmn probe				
	Cmi probe Cmt probe				
	Cmt probe				

Name of primers and target DNA, sample treatment in the original article, variant of PCR protocol, reference and observations for plant pathogenic bacteria according to ISPP nomenclature. When the nomenclature reported in articles differs, the originally cited names of side of the table bacteria are indicated on the right

Genus Rhodococcus

Genus Rhodococcus						
Species	Primer name Target DNA	Variant of PCR protocol	Sample (treatment)	Reference	Synonyms/observations	
R. fascians	JRERIGHT/JRELEFT fas-1 gene (cytokinin biosynthesis)	Conventional	Plant (DNA extraction)	Stange <i>et al.,</i> 1996		

Genus *Curtobacterium*

Genus Curtobacterium						
Species/pathovars	Primer name Target DNA	Variant of PCR protocol	Sample (treatment)	Reference	Synonyms/observations	
C. flaccumfaciens pv. flaccumfaciens	CF4/CF5 Chromosomal DNA (unknown)	Conventional	Bacteria (DNA extraction)	Guimaraes <i>et al.,</i> 2001		
C. flaccumfaciens pv. flaccumfaciens	CffFOR2/CffREV4 Chromosomal DNA (unknown)	Conventional	Bacteria (DNA extraction) or seeds	Tegli <i>et al.,</i> 2002		

Name of primers and target DNA, sample treatment in the original article, variant of PCR protocol, reference and observations for plant pathogenic bacteria according to ISPP nomenclature. When the nomenclature reported in articles differs, the originally cited names of side of the table bacteria are indicated on the right

Genus Leifsonia

Genus Leifsonia						
Species/subspecies	Primer name Target DNA	Variant of PCR protocol	Sample (treatment)	Reference	Synonyms/observations	
L. xyli subsp. xyli	CxxITSf # 5/CxxITSr # 5 ITS region CxFOR/CxxREV/ CxcREV ITS region	Conventional Multiplex	Bacteria (untreated), vascular fluid (PVP)	Fegan <i>et al.,</i> 1998	<i>Clavibacter xyli</i> subsp. <i>xyli</i> Multiplex assay allows differentiation between <i>C. xyli</i> subsp. <i>xyli</i> and <i>C. xyli</i> subsp. <i>cynodontis</i> .	
L. xyli subsp. xyli	Cxx1/Cxx2 ITS region	Conventional	Bacteria (untreated), vascular sap (PVP and Ficoll)	Pan <i>et al.,</i> 1998	C. xyli subsp. xyli	
L. xyli subsp. xyli	RSD 33/RSD 297 (primary) + RST60/RST59 (secondary) ITS region	Nested	Not indicated	Falloon <i>et al.,</i> 2006		
L. xyli subsp. xyli	Lxx82F/Lxx22R Lxx202F/Lxx331R ITS region	Conventional Real-time (SBYR® Green Master Mix)	Plant (DNA extraction)	Grisham <i>et al.,</i> 2007		

Pathogenicity tests Seedling test for *C. michiganensis*

- Pathogenicity tests on tomato seedlings were performed by puncturing the stem four times with a needle that had been dipped in a suspension of bacteria containing 10²-10⁵ cells mL⁻¹.
- The inoculum was prepared from a culture grown overnight on NA and suspended in saline.
- The plants were maintained at 28°C and symptoms were recorded after 7-21 days.
- For each strain, five plants were inoculated, and the test was conducted three times.
- Using titers of 8 x 10⁴ bacteria all plants were infected and show severe symptoms.
- All *Clavibacter* spp. are vascular plant pathogens causing systemic infections.

Pathogenicity tests

Seedling test for *C. michiganensis* subsp. *michiganensis*

- The bacterium is re-isolated from wilting plants by removing a 1-cm stem section from 2 cm above the inoculation point and suspending in phosphate buffer and dilution plating on NGA or YPGA.
- Stripes on stems developed that split and exposed reddish brown cavities (stem cankers).

Pathogenicity and hypersensitive response (HR) assays *C. michiganensis* subsp. *michiganensis*

- Cell suspensions were prepared and tomato seedlings (*Lycopersicon esculentum* Mill. cv. Bonny Best) and four o'clocks (*Mirabilis jalapa*)plants were tested for virulence on tomato and HR on four o'clock plants.
- Most *C. michiganensis* subsp. *michiganensis* strains were fully virulent (causing cankers and wilt in tomato), and a strong HR on four o'clock plants.
- Some strains showed intermediate virulence reactions (produced only cankers at the site of inoculation) and two strains of intermediate virulence were inconsistent (+/-) in HR response.

Pathogenicity and hypersensitive response (HR) assays *C. michiganensis* subsp. *michiganensis*

Figure 1. Symptomatology of *Clavibacter michiganensis* subsp. *michiganensis* in different hosts: a) Bacterial canker on *Solanum cheesmanii*, b) Bacterial wilting and collapse of *Solanum cheesmanii* c) Hypersensitive response in *Nicotiana tabacum*, d) bacterial canker on naranjilla *Solanum quitoense* e) Diagnostic symptomatology of incurvature of leaves characteristic of bacterial wilt caused by *Clavibacter michiganensis* subsp. *michiganensis* in *Solanum quitoense* (compare to leaves in 1f plant to the extreme right) f) Experimental units (naranjilla plants) in the assay to evaluate the parasitic ability of *Clavibacter michiganensis* on *Solanum quitoense*: first to the left (T1: root damage), second to the left (T2: no-wound and inoculation), two plants in the center (T3: aerial wounds), T0: plant to the right.

Bolanos-Carriel et al., 2017

Pathogenicity test Rhodococcus fascians

- A44a & A25f strains isolated from host plants using selective and non-selective media.
- Pea seedlings inoculated with these isolates.
- Plants with symptoms of leafy gall and/or shot proliferation used for re-isolations.

Sandberg et al.,2011

Pathogenicity tests C. flaccumfaciens pv. fluccumfaciens

- The pathogenic *C. flaccumfaciens* pv. *fluccumfuciens* and non pathogenic *Curtobacterium* species were inoculated onto leaves of both soybean and garden bean plants.
- All except non pathogenic *Curtobacterium* species were pathogenic on both beans and soybeans.

Pathogenicity tests *C. flaccumfaciens* pv. *fluccumfuciens*

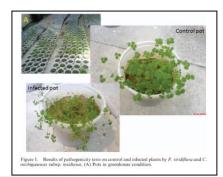
- Comparison of symptoms from plants inoculated:
- With pink (left) and
- A standard highly virulent orange (right) isolate (15 days postinoculation).

Pathogenicity tests

On alfalfa(*Medicago sativa* also called lucerne) *C. michiganensis* subsp. *insidiosus*

- Grow susceptible alfalfa test plants (varieties Europe and Orca seem to be highly susceptible) in pots with enough substrate, at approximately 20-25C (day) and >70% relative humidity in a glasshouse or growth chamber. At least 10 5-6 week old plantlets should be used for each pathogenicity test.
- Use a reference strain (known to be pathogenic) as a positive control to inoculate a series of 10 plantlets for each experiment as well as a series of plantlets inoculated with sterile physiological saline as a negative control.
- Prepare an appropriate volume of approximately 10⁹cfu mL⁻¹ suspension of the presumptive 24-72 h old isolates and of the reference strain in sterile physiological saline (24-48 h old culture).

Pathogenicity tests On alfalfa(*Medicago sativa* also called lucerne) *C. michiganensis* subsp. *insidiosus*


Continued.

- Three methods can be used for inoculation:
- Method 1: dip a previously disinfected pair of scissors into the bacterial suspension and use them to cut the plantlets. Dip the scissors as many times as required into the suspension to be sure that enough suspension is present.
- Method 2: cut the plantlets with a disinfected pair of scissors and add a drop of bacterial suspension on each wound with a pipette.
- Method 3: dip shortened roots of test plants into the bacterial suspension for 17-18 h (Víchová and Kozová,2004).

Pathogenicity tests *C. michiganensis* subsp. *insidiosus* on alfalfa(*Medicago sativa* also called lucerne) Continued..

- Cormack et al. (1957) concluded that root inoculation is more efficient than stem inoculation, at least for breeding tests. But this method is not easy to perform.
- Immediately after inoculation, place a plastic bag over the plantlets or use any other appropriate system to keep the plantlets under high moisture conditions for 24 h, the optimum temperature being 17-24C.
- After this, plantlets can be kept under normal glasshouse conditions.
- Keep the plants under observation for at least 6-8 weeks. From the fourth week, make at least weekly observations for wilting.
- Isolate from wilting plants by removing a 1-cm stem section from 2 cm above the inoculation point and suspending in phosphate buffer.
- Perform dilution plating on King's B or YPGA media.
- Subculture presumptive isolates and undertake identification tests to confirm they are *C. michiganensis* subsp. *insidiosus*.

Pathogenicity tests On alfalfa *C. m* subsp. *insidiosus & P. viridiflava*

- Healthy alfalfa seeds were selected for pathogenicity test, disinfected with 5% sodium hypochlorite for 10 min and then they were washed thrice in sterile and distilled water.
- Then seeds were planted in pots containing 2 kg of sterile sandilumi soil in greenhouse with three repeats. After 45 days, plantlets reached a three-to four-leaved stage; only 15 plantlets per pot were kept.
- Bacterial suspension was prepared by culturing the bacterium in nutrient broth yeast extract (NBY). To recognize pathogenic strains, a bacterial suspension with an OD= 0.1 at 600 nm was injected in stem and crown of plantlets.
- Similarly, the bacterial suspension was added to soil (Lukezic *et al.*,1983). For each strain, one pot was considered as control to which only sterile distilled water was injected or added to the soil.

Pathogenicity tests Clavibacter sepedonicus

- Suspensions (10⁶ cfu/ml) were injected into stems of ten *Solanum melongena* plants (cv. Black Beauty) at leaf stage 3.
- Control plants were inoculated with sterile water.
- Plants were incubated at 21°C and 70-80 % humidity.
- First symptoms were observed as dark green areas on leaves after ten days followed by wilting and necrosis.
- *C. sepedonicus* was re-isolated from eggplant and identified.

Positive pathogenicity test on eggplant.

Altundağ et al.,2008

Preservation *Clavibacteria* spp.

- Freeze-drying may sometimes affect virulence of plant pathogens (Servin-Massieu, 1971).
- Virulence of *Clavibacter nebraskensis* and probably other subspecies can be maintained satisfactorily by storage on solid complex media at 6°C for 2 years or by lyophilization.
- Storage of *Clavibacter nebraskensis* in sterile distilled water or phosphate buffer at 6°C or room temperature was unsatisfactory for maintenance of viability and virulence.
- Strains maintained in dried leaves of greenhouse grown plants were viable and virulent up to three months (Vidaver, 1977).
- The bacteria can survive in infected corn, but also in infected kernels or in irrigation water.

Preservation *Clavibacteria* spp.

- The bacterium *C. m. insidiosus* can remain infective for more than 3 years.
- As laboratory experiments showed, the bacterium can remain in dried tissue or seed for 10 years (Erwin,1990).

Identification of the bacterial pathogens *Streptomyces*

Disease diagnosis and pathogen diagnostics

Gram-Positive Bacteria Plant pathogenic genera

Domain or empire: Bacteria
 Division or Phylum: "Actinobacteria"
 Class: Actinobacteria
 Subclass: Actinobacteridae
 Order: Actinomycetales
 Suborder: Streptomycineae
 Family: Streptomycetaceae
 Genus: Streptomyces

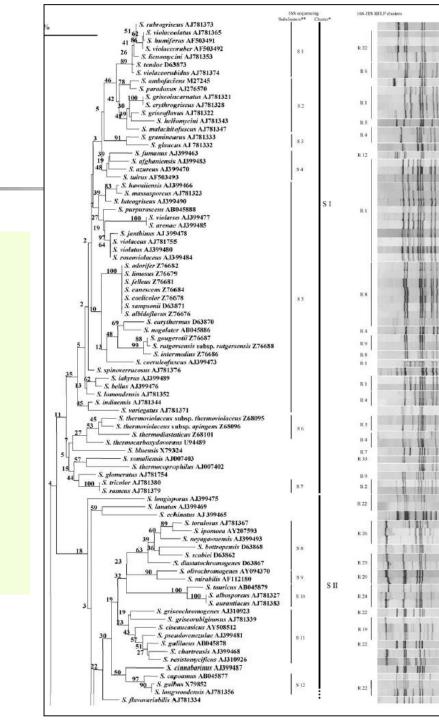
Actinobacteriology Actinomycetes

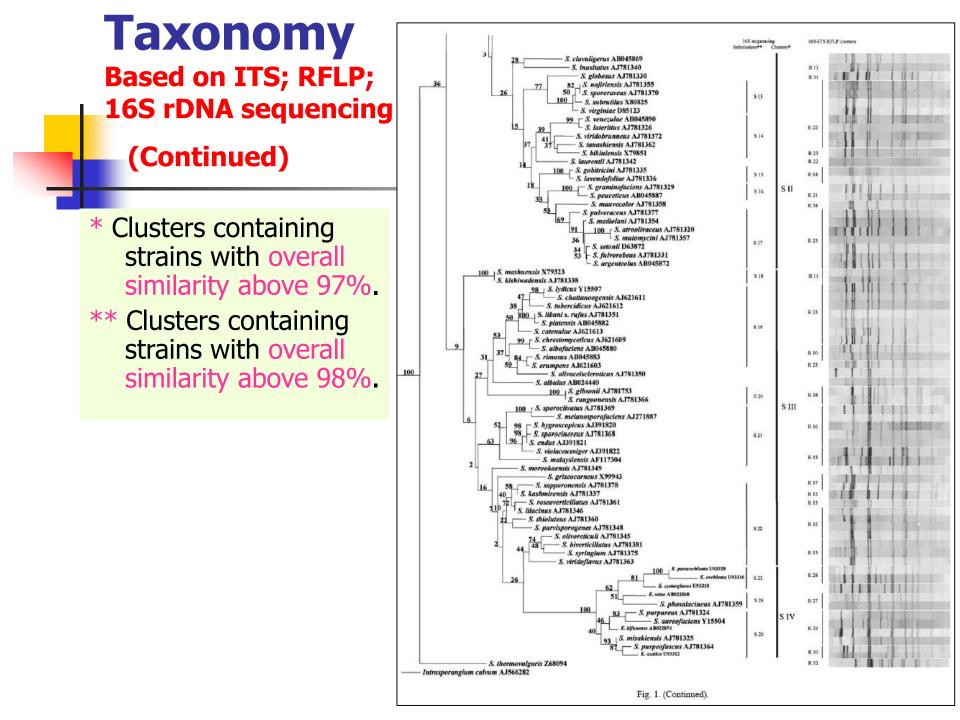

- Actinomycetes are non-motile, filamentous, gram positive bacteria.
- They produce branching mycelium which may be of two kinds viz.:
- 1. Substrate mycelium, and
- 2. Aerial mycelium.
- Among actinomycetes, the streptomycetes are the dominant.
- The non-streptomycetes are called rare actinomycetes, comprising approximately 100 genera.

The family Streptomycetaceae

- The family Streptomycetaceae was created by Waksman and Henrici, 1943.
- Originally this family harbored only the type genus *Streptomyces*.
- Zhang *et al.*,1997 proposed that the genus *Kitasatospora* be included, and recently, a third genus, *Streptacidiphilus*, was added (Kim *et al.*,2003).

16S rDNA phylogeny Genus *Streptomyces*


- Neighbour-joining tree of the bacterial isolates and representative species of the genus *Streptomyces* based on partial 16S rRNA gene sequences.
- Numbers at the nodes indicate the levels of bootstrap support based on 1000 resampled data sets.
- Only values greater than 50% are shown.
- The scale bar indicates 0.005 substitutions per nucleotide position.


Adegboye and Babalola,2013

Taxonomy Based on ITS; RFLP; 16S rDNA sequencing

 Neighbor-joining tree based on almost complete 16S rDNA sequences of 158 *Streptomyces* and *Kitasatospora* type strains in correlation with corresponding 16S-ITS RFLP fingerprinting data.

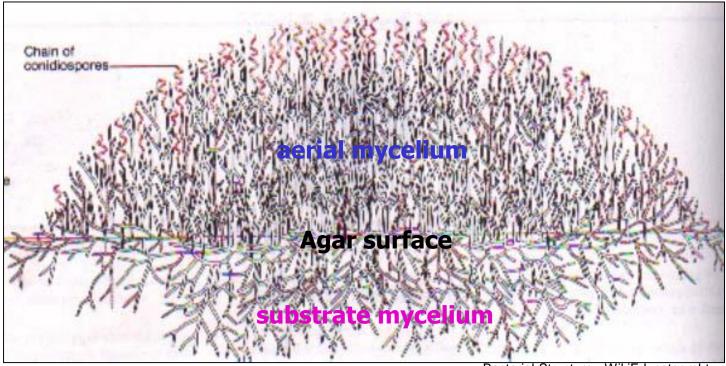
Lanoot et al.,2005

Description of the family Streptomycetaceae

- The genus Streptomyces includes aerobic, Gram-positive, non acid-alcohol fast actinomycetes form an extensively branched substrate mycelium that rarely fragments.
- The aerial mycelium forms chains of three to many spores.
- In some species, aerial hyphae consist of long, straight filaments, which bear 50 or more spores at more or less regular intervals, arranged in whorls (verticils).
- The filamentous bacteria produce well-developed vegetative hyphae (between 0.5-2.0 µm in diameter) with branches.
- The organisms produce a wide range of pigments responsible for the color of the substrate and aerial mycelium.

Description of the family Streptomycetaceae

- Streptomyces grow within 5-11.5 pH ranges.
- Fatty acids are complex mixtures of saturated, *iso*and *anteiso-*fatty acids.
- Mycolic acids are not present.
- The mol% G+C of the DNA ranges generally between 66 and 74%.

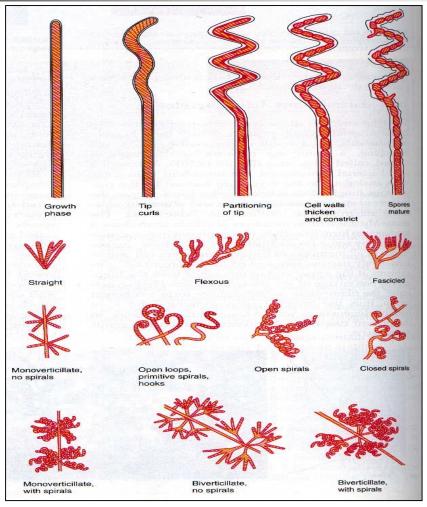

Streptomyces species Gram positive, filamentous prokaryotes

- An unusual group of Gram positive filamentous bacteria.
- Produce branched filamentous mycelia Spiral sporophores.
- Produce drought-resistant spores at end of filaments.
- The aerial mycelium at maturity forms chains of three to many spores. The spores are nonmotile.
- Also at maturity produce secondary metabolites:
- 1. A variety of streptomycin-like antibiotics(streptomycin).
- 2. Phtotoxins called as thaxtomins.
- 3. Anti-tumor agents,
- 4. Immunosuppressants (Loria et al)

Streptomyces species Gram positive, filamentous prokaryotes

- An unusual group of Gram positive filamentous bacteria.
- Produce branched filamentous mycelia Spiral sporophores.
- Produce drought-resistant spores at end of filaments.
- The aerial mycelium at maturity forms chains of three to many spores. The spores are nonmotile.
- Also at maturity produce secondary metabolites:
- 1. A variety of streptomycin-like antibiotics(streptomycin).
- 2. Phtotoxins called as thaxtomins.
- 3. Anti-tumor agents,
- 4. Immunosuppressants (Loria et al)

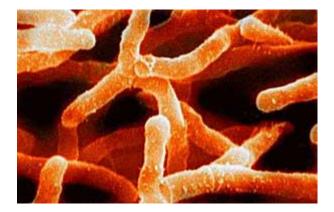
Streptomyces species Mycelium and spore structures



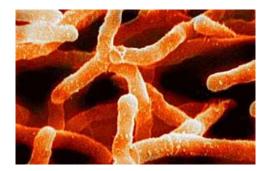
www.Bacterial Structure - WikiEducator.mht

Streptomyces species Plant pathogenic spp.

- Colonies are slow growing, aerobic, Gram-positive, nonacid-fast, glabrous or chalky, heaped and folded, and white, tan, gray, brown, or black in color.
- Colonies often have an earthy odor.
- Filaments are extensively branched.
- Aerial filaments are abundant and usually produce long chains of spores formed by fragmentation of the filaments.
- Almost all *Streptomyces* spp. are soil-inhabiting saprophytes.
- However, a few species are pathogenic and cause diseases of underground structures of diverse plant species.


Various types of spore-bearing structures on the streptomyces

www.Actinomycetes Index - Mycology Image Gallery - TML & MSH MicroWeb.mht


Cell wall structure Actinomycetes vs. Fungi

- Among actinomycetes, the streptomycetes are the dominant.
- Like fungi, many actinomycetes have long, slender, branching hyphae; like fungi, they produce spores (most bacteria reproduce by cell division); and like fungi, they help to break down the complex, woody organic molecules such as cellulite, lignin and chitin that form cell walls.
- Actinomycetes differ from fungi in the composition of their cell wall.
- They do not have chitin and cellulose which are commonly found in the cell walls of fungi.

Actinobacteria. Source: Wikipedia

Cell wall structure Actinomycetes vs. Fungi

- Among actinomycetes, the streptomycetes are the dominant.
- Like fungi, many actinomycetes:
- Have long, slender, branching hyphae;
- They produce spores (most bacteria reproduce by cell division);
- They help to break down the complex, woody organic molecules such as cellulite, lignin and chitin that form cell walls.
- Actinomycetes differ from fungi:
- 1. In the composition of their cell wall.
- 2. They do not have chitin and cellulose which are commonly found in the cell walls of fungi.

ISPP List,2004

Plant pathogenic *Streptomyces* species

- Huge genus (many hundreds of spp) with perhaps 20 pathogenic spp, some of which are difficult for most labs to differentiate (D. Stead)
- All cause scabs of root cropspotato.
- Several other *Streptomyces* species cause disease, although much less is known about these pathogens than about the three species mentioned previously.
- Unfortunately, there are many unsubstantiated reports in the literature of *Streptomyces* species causing diseases on crops.

- Streptomyces acidiscabies
- Streptomyces albidoflavus
- Streptomyces candidus
- Streptomyces caviscabies
- Streptomyces collinus
- Streptomyces europaeiscabiei
- Streptomyces intermedius
- Streptomyces ipomoeae
- Streptomyces luridiscabiei
- Streptomyces niveiscabiei
- Streptomyces puniciscabiei
- Streptomyces reticuliscabei
- Streptomyces scabiei
- Streptomyces setonii
- Streptomyces steliiscabiei
- Streptomyces turgidiscabies
- Streptomyces wedmorensis

Symptoms and Signs

- S. scabies causes variable symptoms on the surface of potato tubers including erumpent, russet, and pitted lesions.
- Erumpent lesions are raised lesions, russet lesions are defined as superficial corky tissue that covers large areas of the tuber surface and pitted lesions are dark colored sunken areas up to ½ in deep.

Scab lesions

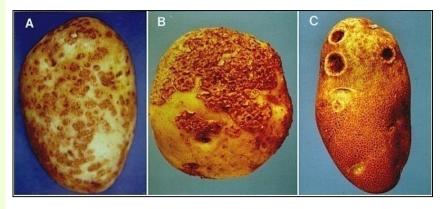
- Scab lesions can occur anywhere on the tuber surface and more than one type of lesion may be present on a single tuber. Scab affects young tubers with the lesions expanding as the tuber matures.
- There are no above ground symptoms of common scab infection.

Symptoms and Signs

- Gram-positive, filamentous bacteria.
- Common in soils worldwide.
- Causes pitted lesions on root and tuber crops.
- Only causes symptoms on growing plant tissue.
- Symptoms due to a toxin that inhibits cellulose synthesis.
- Two forms of scab occur:
- 1. Common scab occurs in all production areas and is most severe in soils with a pH above 5.5.
- 2. Another less common form, called acid scab, is important in acidic soils (below pH 5.5).

Streptomyces Common scab

- fas genes produce plant hormone cytokinin.
- Causes root cell swelling and in lab can cause galls to form.


Lecture 23 bacti3-10

Diseases caused by *Streptomyces*

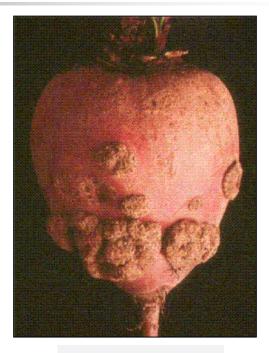
Streptomyces acidiscabies	Common scab of potato and other taproot crops
Streptomyces aureofaciens	Russet scab of potato
Streptomyces caviscabies	Deep pitted scab in potatoes
Streptomyces collinus	Scab of potato
Streptomyces europaeiscabiei	Associated with common scab
Streptomyces ipomoeae	Soil rot of sweet potato
Streptomyces luridiscabiei	Raised corky lesions of potato
Streptomyces niveiscabiei (From Korea)	Potato common scab disease
S. reticuliscabiei	Associated with netted scab of potato
Streptomyces scabiei	Potato common scab disease; Pod wart of peanut
Streptomyces steliiscabiei	Associated with common scab
Streptomyces turgidiscabies	Associated with common scab
Streptomyces sp. (From Japan)	Root tumor of melon

Disease symptoms Potato scab

- Streptomyces scabies can produce a range of symptoms on potato tubers.
- A. Superficial lesions are sometimes referred to as russet scab; these and similar symptoms also can be caused by several other *Streptomyces* species.
- B. Raised lesions are usually referred to as common scab; however, these symptoms do not differ from those produced by *S. acidiscabies*.
- c. Pitted lesions may or may not have a ridge of raised tissue surrounding the pit.

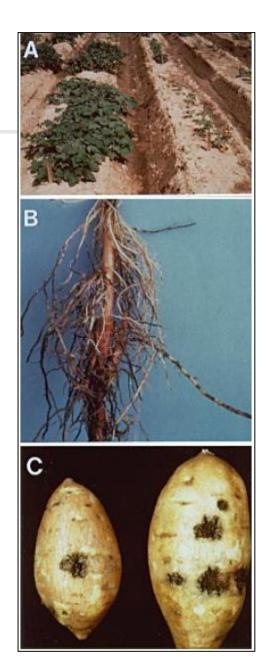
Loria *et al.*,1997

Disease symptoms Potato scab


Potato Scab

- Pathogen is soil inhabitant
- Most severe in near neutral to alkaline pH
- Penetrates through wounds, natural openings and directly
- Spread in soil water and by wind and infected tubers
- Young tubers more susceptible than older ones
- Overwinters in soil on plant debris and tissue

Radish and Beet scab symptoms Streptomyces scabies

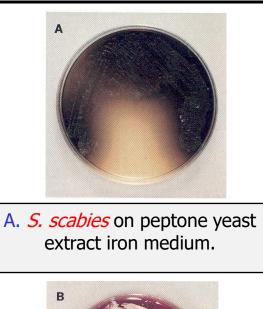

Radish Scab

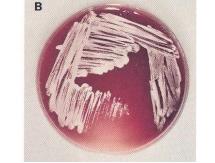
Beet Scab

Symptoms Soil rot of sweet potato

- Soil rot of sweet potato caused by *Streptomyces ipomoeae*.
- A. Fibrous root rot causes a reduction in plant stand and vine growth in susceptible (right) compared with resistant (left) cultivars (courtesy C. A. Clark, Louisiana State University, Baton Rouge).
- B. Infection of Fibrous, and
- c. Storage roots causes tissue necrosis and results in yield loss (courtesy W. J. Martin).

Loria *et al.*,1997


Symptoms Root tumor of cucurbits



A *Streptomyces* species recently identified from Japan causes root tumor of melon. Aboveground symptoms include (A) reduction in plant growth and wilting of vines that result from (B) galling on fibrous roots.

Pigmentation

- Strains belonging to the genus *Streptomyces* may produce a wide variety of pigments responsible for the color of the vegetative and aerial mycelia.
- In addition, colored diffusible pigments may also be formed.
- Note that the production of pigments largely depends on the medium composition and cultivation conditions.

Colors of substrate mycelium and soluble pigment occurring in streptomycetes

Representative species (DSM no.) ^a	Figure (strain no.) ^b	Color
S. aurantiacus (40412); S. griseoruber (40275)	4a (40412)	Orange to dark red
S. longispororuber (40599); S. spectabilis (40512)		(mainly endopigment)
S. californicus (40058); S. cinereoruber (40012)	4b (40058)	Red to blue/violet
S. violaceus (40082); S. purpurascens (40310)		(mainly endopigment)
S. coelicolor (40233); S. cyaneus (40108)	4c (40163)	Red-violet to blue
S. violaceoruber (40049); S. lateritius (40163)		(endo- or exopigment or both)
S. atroolivaceus (40137); S. canarius (40528)	4d (40089)	Yellow-orange/greenish-yellow
S. galbus (40089); S. tendae (40101)		(endo- and exopigment)
S. flavoviridis (40210); S. olivoviridis (40211)	4e (40071)	Green to gray-olive
S. viridochromogenes (40110); S. nigrifaciens (40071)		(endo- and exopigment)
"S. malachiticus" (40167); "S. malachitorectus" (40333)		Green (endopigment)
S. badius (40139); S. eurythermus (40014)	4f (40100)	Red-brown to dark-brown
S. phaeochromogenes (40073); S. ramulosus (40100)		(endo- and exopigment)
S. alboniger (40043); S. hygroscopicus (40578)		Gray-brown to black
S. purpeofuscus (40283); S. mirabilis (40553)		(mainly endopigment)

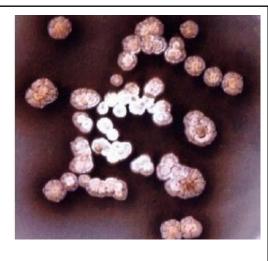

Abbreviations: DSM, Deutsche Sammlung von Mikroorganismen und Zellkulturen; and ISP, International Streptomyces Project.

^aDSM no. 40XXX = ISP no. 5XXX.

^bFigures 4a–f show the substrate mycelia of the strain after cultivation on three different media for 7 days; left: starch-caseinnitrate agar, middle: GYM agar, right: oatmeal agar; for compositions, see Tables 10 and 12). From Korn-Wendisch and Kutzner (1992).

The Prokaryotes (chapter 1.1.7),2006

A–J: Color of the aerial mycelium of *Streptomyces* strains grown on different agar media after 3 weeks of incubation at 28° C. Left: starch-casein-nitrate agar; Middle: GYM agar; Right: oatmeal agar.

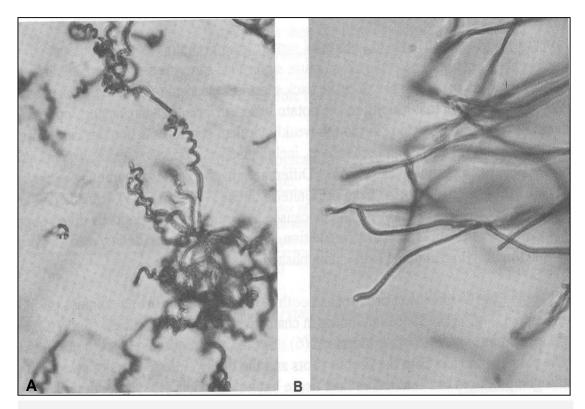


Color of the aerial mycelium of *S. scabiei*

- Top: 7-day-old colonies of *S. scabiei* on yeast-malt agar. Start of aerial hyphae formation (white colour).
- The brown colonies are raised, consist of tough mycelial growth and they are difficult to remove from the agar surface.

Bottom: 14-day-old colonies of *S. scabiei* on yeast-malt agar.

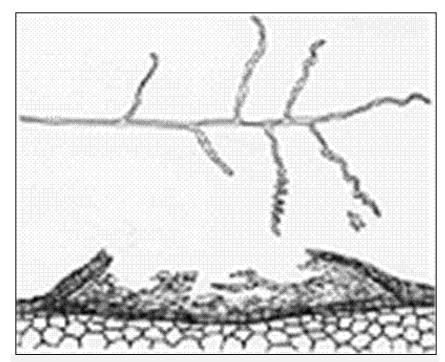
 Active spore formation in aerial hyphae that turn into a dusty grey mass.


Microscopic observation wet mount

- On clean grease free glass slide, actinomycete colony was suspended in 1-2 drops of water and coverslip was placed then it was observed under microscope.
- It is used to study the shape, size spores, motility etc.

Staining spores Streptomyces and related genera

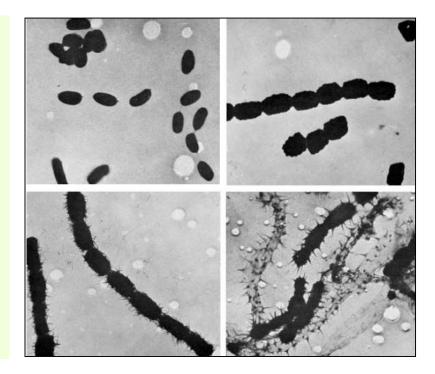
- Stain the bacterial preparation on a glass slide for 2 min with 2:2:1 mixture of 1% Bismarck brown, 0.1% toluidine blue, and a saturated solution of (NH₄)₂SO₄.
- Wash with water, and mount under a microscope.
- The hyphae stain bright yellow, while the spores are blue. Red brown granules can be seen in the hyphae.
- A blue stain may be picked up by some nonsporulating aerial hyphae.


Spore chains of plant pathogenic *Streptomyces* spp.

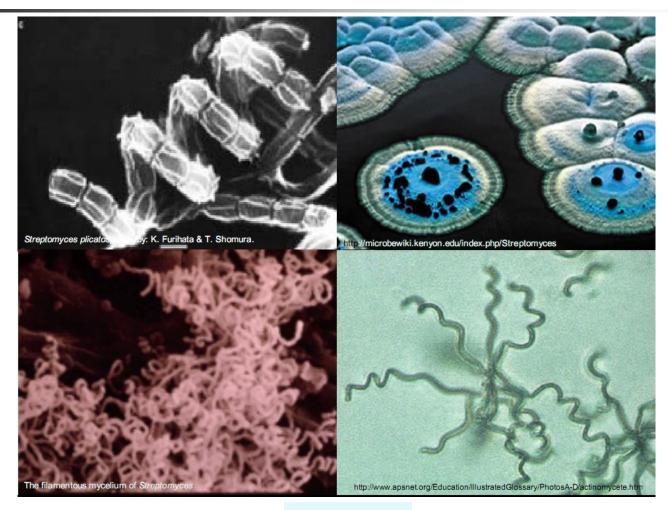
A. Spiral spore chains of *S. scabies.*B. Flexuous spore chains of *S. acidiscabies.*

Schaad *et al.*,2001

Characteristic corkscrew mycelium *S. scabies*



Characteristic corkscrew mycelium produced by *S. scabies*.


Brooke Edmunds

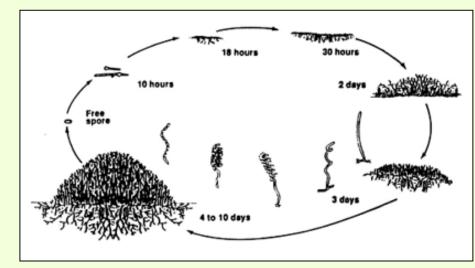
Spore chains of streptomycetes

- Electron micrographs of four types of arthrospores of streptomycetes: smooth, warty, hairy and spiny.
- The spore chains are about 1 m long.

Spore chains of streptomycetes

Secor,2013

The biodegradative activities of actinomycetes


- Most streptomycetes can degrade complex and and aromatic compounds.
- Members of the genus Streptomyces are involved in the biodegradation of various polymers abundant in soil owing to their ability to produce extracellular enzymes.
- Streptomycetes are among the very few bacteria able to degrade lignin which occurs in nature.
- Most isolated streptomycetes are nonfastidious; they do not require organic nitrogen sources or vitamins and other growth factors.

Production of antibiotics

- Streptomycetes are the producers of more than 5000 known bioactive compounds (Anderson and Wellington, 2001), and estimates of the total number of antimicrobial compounds produced by representatives of *Streptomyces* screened for new antibiotics are of the order of 100,000 (Watve *et al.*, 2001).
- Many strains produce one or more antibiotics.

Ecology and life cycle *S. scabies*

- Members of the genus *Streptomyces* undergo a complex life cycle.
- S. scabies survives in the soil as spores in infected tissue and is spread through water, on infected plant material, and in wind-blown soil.
- S. scabies infects young tissues (like developing tubers) directly and gains access to older tissue through wounds and natural openings.
- *S. scabies* also produces a toxin, thaxtomin, which is closely involved in the infection cycle.

Streptomyces species S. scabies

- S. scabies is an unusual bacterium that has a filamentous growth form similar to fungi.
- However, S. scabies filaments are much smaller than fungal hyphae – S. scabies filaments are 1 µm or less in diameter.
- Streptomyces scabies, a cause of potato scab and similar diseases of taproot crops, was the first described and is the best studied of he pathogenic species.

Streptomyces species *S. acidiscabies*

- Streptomycin acidiscabies produces symptoms like those of *S. scabies* (Manzer *et al.*,1977) and has a similar host range (Lambert and Loria,1990), although the two species are not closely related, based on:
- 1. DNA-DNA homology, and
- 2. 16S rRNA sequences.

Streptomyces species S. turgidiscabies

- Another Streptomyces sp. that is pathogenic on potato has been described from the island of Hokkaido in Japan (Miyajima et al., 1998).
- This species, *S. turgidiscabies*, has a wide host range among root crops and produces symptoms like those of *S. scabies* on potato tubers, suggesting a common mechanism of pathogenicity.
- However, this recently described species is distinctly different from both *S. acidiscabies* and *S. scabies*, based on:
- 1. DNA-DNA homology,
- 2. Ribosomal DNA sequence comparisons,
- 3. Morphological characteristics.

Streptomyces species Host range

- Potatoes (Solanum tuberosum) are the main economic host but other fleshy root crops, including beets, radish, rutabaga, turnip, carrot and parsnips, are affected.
- All phytopathogenic actinomycetes, with the exception of *Nocardia vaccinii*, which causes galls and bud proliferation in blueberry, belong to the genus *Streptomyces* (Locci, 1994).

Media used for selective isolation

References ^a Ingredients (g/liter)	1 Starch-casein-KNO₃ agar	2 Glycerol-arginine agar	3 Actinomyces isolation agar	4 Chitin agar	5 Raffinose-histidine agar
Chitin (colloidal)	_	_	_	4.0	_
Starch	10.0 ^b	_	_	_	_
Glycerol	_	12.5	5.0°	—	—
Raffinose	_	_	_	_	10.0
Sodium propionate	_	_	4.0	_	_
KNO3	2.0	_	_	_	_
Casein	0.3	_	_	_	_
Sodium caseinate	_	_	2.0	_	_
Asparagine	_	_	0.1	_	_
Arginine	_	1.0	_	_	_
Histidine	_	_	_	_	1.0
NaCl	2.0	1.0	_	_	_
KH₂PO₄	_	_	_	0.3	_
K₂HPO₄	2.0	1.0	0.5	0.7	1.0
MgSO₄ ·7H ₂O	0.05	0.5	0.1	0.5	0.5
CaCO ₃	0.02	_	_	_	_
Fe ₂ (SO ₄) ₃ ·6H ₂ O	_	0.01	_	_	_
FeSO ₄ ·7H ₂ O	0.01	—	0.001	0.01	0.01
CuSO₄ ·5H ₂O	_	0.001	—	_	—
ZnSO4 ·7H 2O	_	0.001	_	0.001	_
MnSO ₄ ·H ₂ O	_	0.001	_	_	_
MnCl ₂ ·4H ₂ O	_	_	_	0.001	_
Agar ^d	18.0	15.0	15.0	20.0	12.0
pH	Adjusted to 7.0–7.5 or lower or higher depending on the flora to be isolated.	Adjusted to 7.0–7.5 or lower or higher depending on the flora to be isolated.	Adjusted to 7.0–7.5 or lower or higher depending on the flora to be isolated.	Adjusted to 7.0–7.5 or lower or higher depending on the flora to be isolated.	Adjusted to 7.0–7.5 or lowe or higher depending on t flora to be isolated.

*References: Küster and Williams, 1964; El-Nakeeb and Lechevalier, 1963; Hsu and Lockwood, 1975; and Vickers et al., 1948; Difco Laboratories.

^bAlternatively, glycerol at 10 g/liter can be used.

"Not contained in the dehydrated medium; added at the time of preparation.

^dThe different amounts of the agar are due to the varying quality used by the individual authors.

The Prokaryotes (chapter 1.1.7),2006

Isolation method Diagnostic media

1. Yeast malt extract medium (YME)

 Yeast extract 	4.0 g/L
 Malt extract 	10.0 g
 Dextrose 	4.0 g
 Agar 	20.0 g

- Adjust to pH 7.0-7.2 with NaOH before adding agar.
- The medium is dissolved in water and autoclaved for 15 min at 15 lb pressure.
- 2. Peptone-yeast extract iron (PYI) agar
- Peptone Iron Agar (Difco) 36.0 g/L
- Yeast extract
 1.0 g
- Combine all ingredients, adjust the pH to 7.0-7.2 with NaOH or HC1 if necessary.

Isolation method Diagnostic media

3. Oatmeal agar (OMA) and oatmeal broth (OMB)

- Oatmeal media are prepared by boiling rolled oats (20 g/1) in distilled water for 20 min., straining through layers of cheesecloth, bringing up the volume to 1 liter and adjusting to pH 7.0-7.2 with 1 M NaOH.
- OMA contains 1.5% agar.

Isolation method Diagnostic media

4. Modified salts starch agar (MSSA)

Soluble starch	10.0 g/L
NaNO ₃	10 g
MgC0 ₃	1.0 g
K ₂ HP0 ₄	0.3 g
NaCl	0.5 g
Agar	15.0 g

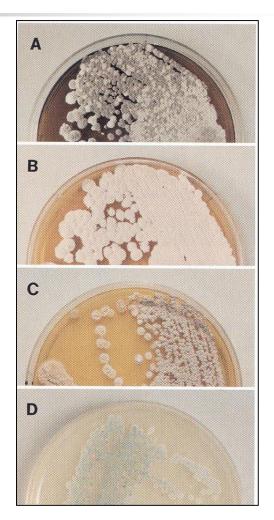
Glycerol may be substituted for starch.

5. *Streptomyces* growth medium(SGM)

Mannitol	20.0 g
K ₂ HP0 ₄	0.2 g
$MgS0_4.7H_20$	0.2 g
NaCl	5.0 g
CaC0 ₃	2.0 g
Sodium	1.0 g
propionate	
Yeast extract	1.0 g
CoCl ₂	0.11mg
Agar	18.0 g

Isolation method

On Water agar or yeast malt extract medium (YME)


- *s. scabies* can be isolated from infected potato tissue by first surface sterilizing the tuber with 1.0% sodium hypochlorite for 1 min.
- Tissue should be selected from the edge of the necrotic areas (may be a light yellow or straw color). Otherwise, Scab lesions were excised and ground with a pestle and mortar in sterile water (1 g/10 ml).
- A small amount of tissue is homogenized with sterile distilled water and the resulting suspension streaked onto water agar/yeast malt extract medium (YME).
- (NPPC (nystatin, polymyxin, penicillium, cycloheximide) water agar, which contains antibiotics, can be used if bacterial or fungal contaminants are present (see Schaad *et al.*,2001).

Isolation method *Streptomyces scabies*

- Check the plates after a few days for a smooth firm mycelium which later develops aerial hyphae.
- The hyphae will begin to fragment into spores giving the culture a powdery appearance.
- Pure cultures were obtained through three repeated cultures of a single colony on potato-dextrose agar.

Colony morphology On complex agar media

- On complex agar media, discrete and lichenoid, leathery or butyrous colonies are formed.
- Colonies are initially relatively smooth surfaced, but later they develop an aerial mycelium that may appear floccose, granular, powdery or velvety.

Identification

- Base on:
- Spore color, aerial hyphae form and color, pigment production, biochemical traits and sugar utilization.
- Research is under way to develop rapid diagnostic tests based on PCR identification tools.

Characteristics of the genus *Streptomyces*

- The metabolism is oxidative and chemoorganotrophic.
- The catalase reaction is positive.
- Generally, nitrates are reduced to nitrites.
- Most representatives can degrade polymeric substrates like casein, gelatin, hypoxanthine, starch and also cellulose.
- In addition, a wide range of organic compounds is used as sole sources of carbon for energy and growth.
- The optimum temperature for most species is 25–35°C; however, several thermophilic and psychrophilic species are known.
- The optimum pH range for growth is 6.5-8.0.

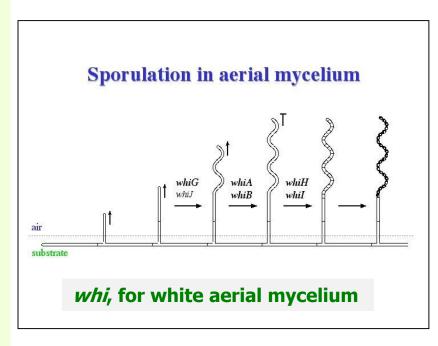
Characteristics of four Streptomyces species Adapted from Schaad *et al.*,2001

Species	Hyphae	Aerial myceliu m color	Pigment production in agar	Sugar Utilization	Optimum temp.
S. scabies	Spiral	Gray	Brown	All	28-30°C
S. acidiscabies	Flexous	White/Pink	Red/Yellow	Not raffinose	25-28°C
S. turgidiscabies	Flexous	Gray	None	All	25-28°C
S. ipomeoae*	Spiral	Blue/Green	None	Not galacturonic acid	30-32°C

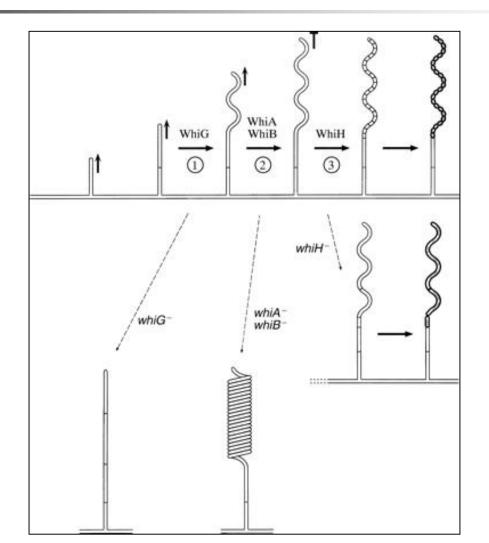
*host range limited to sweet potato (*Ipomoea batatas*)

Phenotypic comparison and grouping of the *Streptomyces* spp. isolated from potato tubers

Trait	Group 1a	Group 1b	Group 2	Group 3	Group 4	Group 5	Group 6
Colony color on YME medium	Gray to brown	Gray to brown	Gray to brown	Gray to brown	Tan	Yellow	V
Spore color	Gray	Gray	Gray	Gray	Gray	Gray	V
Sporophore morphology	Spiral	Spiral	Spiral	Flexuous	Flexuous	Flexuous	V
Melanin production	+	·+	-	+	-	-	V
Utilization of ISP sugars							
L-arabinose	+	+	+	+	+	V	v
D-fructose	+	+	+	+	+	+	+
D-glucose	+	+	+	+	+	+	+
D-mannitol	+	V	+	+	+	+	V
raffinose	+	+	+	+	+	V	V
rhamnose	+	+	+	+	+	+	+
sucrose	+	v	+	V	+	V	v
D-xylose	+	V	+	+	+	V	V
meso-inositol	+	+	+	V	+	V	V
Growth at pH = 4.5 ^b	-	-	nt	-	+	+	nt
Pathogenicity on potato	34/37°	1/5	0/5	1/3	6/38	2/9	0/21

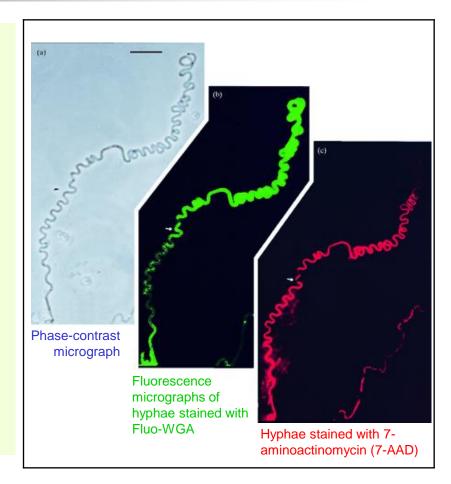

^c Number of pathogenic strains out of the total number of strains.

Selected morphological and physiological characteristics and growth conditions of four *Streptomyces* species


Species (reference)	Spore chain type (medium) ¹	Aerial color of mature colony (medium)	Pigment production (medium)	ISP sugar utilization patterns ²	Growth temperature and medium	
S. scabies (19)	Spiral (YME)	Gray (YME)	Brown (PYI)	All sugars	28-30°C (YME)	
S. acidiscabies (18)	Rectiflexous (YME)	White/pink (YME)	Red/yellow (MSSA)	All except raffinose	25-28°C (YME)	
S. turgidiscabies (26)	Rectiflexous (YME)	Gray (YME)	None	All sugars	25-28°C (YME)	
S. ipomoeae (30)	Spiral (SGM)	Blue/green (SGM)	None ³	Not galacturonic acid	30-32°C (SGM)	
 ¹ Growth media: YME=Yeast malt extract, PYI=Peptone-yeast extract iron agar, MSSA=Modified salt starch agar, SGM=Streptomyces growth medium. ² Sugars include: D-Glucose (positive control), L-arabinose, sucrose, D-xylose, I-inositol, D-mannitol, D-fructose, raffinose, 						
cellulose, galacturonic acid; ISP-International Streptomyces Project.						

whiG, a gene critical for sporulation of *Streptomyces coelicolor*

- WhiG protein, is between continued vegetative-type growth and adoption of a type of aerial growth specialized for sporulation.
- WhiA and WhiB proteins, is between continued extension growth and orderly growth cessation, and is a prerequisite for WhiH protein to properly activate:
- 1. Sporulation septation, and
- 2. Genome partitioning.



whiG, a gene critical for sporulation of *Streptomyces coelicolor*

Inactivation of *whiG*, *whiA* and *whiB* completely prevented all traces of sporulation septation and later stages of spore chain development

- The tightly coiled regions of aerial hyphae in J2401 (*whiA*) were virtually devoid of septa, as shown by the absence of Fluo-WGAstaining crosswalls, and by the continuity of the 7-AADstaining DNA (Fig. 5a-c).
- A very similar pattern was seen in J2402 (*whiB*).
- Although septa were usually absent from the coiled regions of the *whiA* and *whiB* mutants, rare single septa could be found (Fig. 5b-c).

Pathogenicity factors

- 1. Thaxtomin; main toxin responsible for pathogenicity and symptoms.
- Nitrated dipeptides A and B
- > Tyrosine: tryptophan (thaxtomin A)
- Phenylalanine: tryptophan (thaxtomin B)
- 2. Enzymes
- 3. Virulence factor; nec1 protein
- Thaxtomin plus the other virulence factors form "pathogenicity islands".

Mode of action Pathogenicity islands (PAI)

- These islands(PAIs) can move among Streptomyces species creating new scab pathogens by converting nonpathogenic Streptomyces to pathogens.
- 2. May explain variability in symptoms.

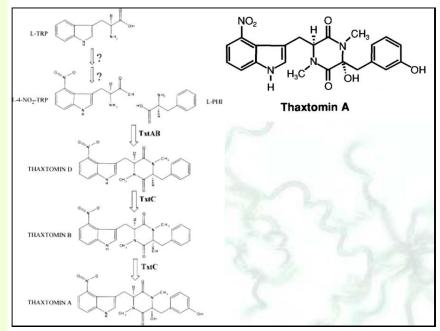
Mode of action Pathogenicity islands (PAI)

- The PAI contains two characterized virulence determinants:
- 1. The gene cluster txtAB, txtC
- 2. An independent virulence gene, nec1 txtAB, code for the peptide synthetase modules in the thaxtomin A biosynthetic pathway.
- It was demonstrated transfer of the PAI from a pathogenic species to the nonpathogen, *S. lividans*, in mating experiments.
- The recipient S. lividans strain produces that tomin A.

Evolution of pathogenicity Pathogenicity islands (PAI)

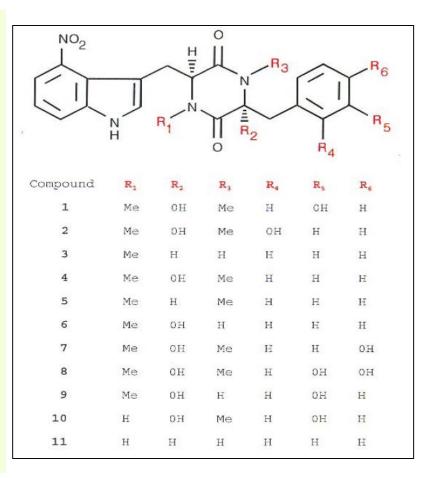
- Recently a pathogenicity island (PAI) in Streptomyces species was identified.
- The horizontal transfer of this island from the ancient species *S. scabies* to the newly emerged pathogenic species *S. turgidiscabies* and *S. acidiscabies* appears to be the basis of evolution of pathogenicity in several newly emerged pathogenic species in agricultural systems.

Virulence mechanisms of Grampositive plant pathogenic bacteria *Streptomyces* spp.


- The lack of a type III protein secretion system (TTSS) in Firmicutes and Actinobacteria immediately raises questions about delivery of virulence proteins across the plant cell wall and membrane.
- S. scabies, Streptomyces turgidiscabies and S. acidiscabies directly penetrate plant cell walls with the help of thaxtomin, a phytotoxin that inhibits cellulose biosynthesis, presumably allowing secretion of proteins at the host cell membrane.
- These pathogens secrete Nec1, a novel protein that is proposed to suppress host defence through an unknown mechanism.

Scab-inducing toxins Thaxtomins Cellulose biosynthesis inhibitors

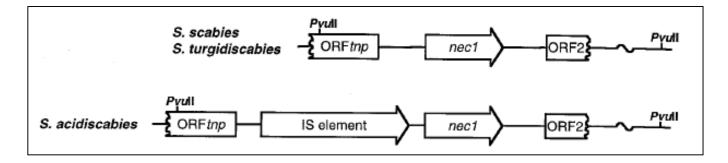
- Scab-inducing toxins such as the cyclic dipeptide thaxtomin A and B, produced by *Stretomyces scabiei*, causing common scab of potato.
- Demonstration of these toxins can also be used for identification (Kinkel *et al.*,1998).
- Thaxtomins are produced only by plant pathogenic species, cause necrosis and cell hypertrophy on expanding host tissue.
- Production of thaxtomins is perfectly correlated to pathogenicity in all strains tested to date including *S. scabies, S. acidiscabies*, and *S. ipomoeae* (King *et al.*,1994), suggesting that thaxtomins may be a common pathogenicity determinant among diverse *Streptomyces* spp. that cause plant disease.


Thaxtomins

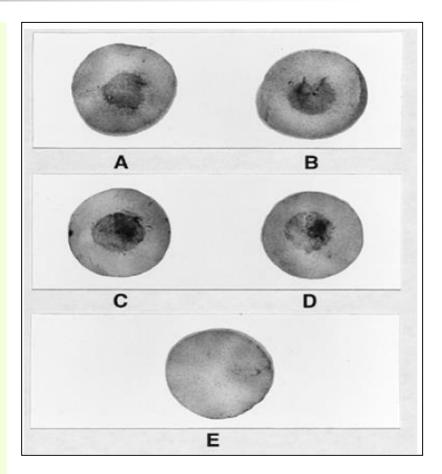
- Thaxtomins, a family of modified dipeptide phytothurs, are produced by *Streptomyces* spp. such as *S. scabies* and *S. acidiscabies*.
- Thaxtomins A and B were the first of the nine members of the family to be described.
- Thaxtomin A is the most abundant of these toxins in potato tuber tissue infected by *S. scabies*.

Structures of thaxtomins

- Structures of thaxtomins produced by plantpathogenic species of *Streptomyces*.
- Thaxtomin A (compound no. 1) is the most abundant of these phytotoxins produced by *S. scabies* in potato tissue.
- Thaxtomin C (compound no. 3) is produced by *S. ipomoeae*.



- *nec1* was structurally conserved among all but one of the pathogenic strains examined.
- The function of *nec1* is not presently known.
- But the necrogenic phenotype of *nec1* suggests that this gene plays a role in plant pathogenicity in streptomycetes.
- A previous study with fewer Streptomyces strains had found a perfect correlation between the presence of nec1 and thaxtomin.


Structure and function of *nec1* Horizontal transfer of *nec1*

- Arrangement of *nec1*, ORF*tnp*, ORF2, and the IS element in *Strepomyces scabies*, *S. acidiscabies*, and *S. turgidiscabies*.
- Sequences of *nec1* and ORF*tnp* are identical in strains representing all three species.
- The physical linkage of nec1 and ORFtnp in a large number of genetically and geographically diverse, plantpathogenic Streptomyces strains suggests that ORFtnp may have been involved in the horizontal transfer of nec1 into Streptomyces.

Phytotoxin assay Potato disc assays

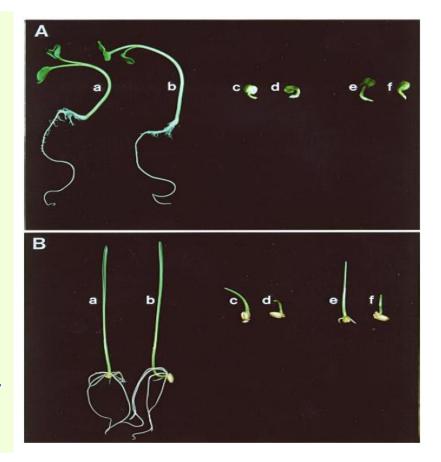
- Necrogenic phenotype on potato tuber disks (PTDs) of *Streptomyces lividans* TK24 expressing *nec1* homologs from:
- A and B: Two strains of *S. turgidiscabies* Hi-C-13 and Car-8;
- A and B: Two wild-type strains Hi-C-13 and Car-8.
- E: S. lividans TK24 harboring the vector alone is included as a control.

Plant bioassay Pathogenicity test on minitubers of potato

- Healthy minitubers of potato cv. Matilda (susceptible to common scab) were produced from leaf-bud cuttings in washed sand in the greenhouse.
- Tubers had a white, thin skin similar to microtubers produced in vitro and were formed at the apex of short stolons.
- They were harvested when they were 1–1.5 cm in diameter.
- Actinomycetes were grown in oat meal broth (OMB) (15 ml) for 4 days at 28°C under shaking (150 rpm).
- Three minitubers were soaked in the OMB and incubated on a moist filter paper in a petri dish in the dark for 4 days.
- Minitubers soaked into non-inoculated OMB were used as healthy controls, whereas minitubers inoculated with *S. scabies* ATCC 49173, *S. scabies* SSC101, or strain SSC122 were used as positive controls in all experiments.
- Many strains were re-tested for up to three times.

Plant bioassay Pathogenicity test on minitubers of potato

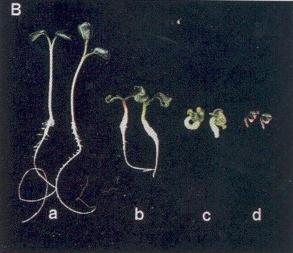
- Necrosis induced on minitubers of potato cv. Matilda 3 days after inoculation *in vitro* with strain SSC 122 (left tuber) and strain 376 (*S. scabies*, Group 1a) (right tuber).
- The tuber in the center was treated with noninoculated oatmeal broth.


The scale is in centimeters.

Radish seedling assays S. scabies, S. turgidiscabies, and S. acidiscabies

- Radish seeds are surface disinfected with 0.5% NaOCI and 0.1% Tween 20 for 3 min, rinsed twice in sterile distilled water and allowed to germinate by incubating on water agar or moist filter paper overnight at room temperature.
- Germinated seeds with protruding radicals are selected for uniformity and individually placed in glass culture tubes (25 mm diameter) containing 10 ml of 1% water agar or 0.5% gelrite.
- Seeds are then inoculated with 0.1-0.5 ml of undiluted Streptomyces cultures grown for 4-6 days in OMB as described in section 4B (no filtration is necessary).
- Seedlings are grown under a 12 h light cycle for 6-10 days at room temperature.
- Pathogenic strains cause brown to black lesions and stunting of the seedling; radial swelling and cell hypertrophy are sometimes visible.

Seedling pathogenicity Radish and wheat seedlings


- Symptoms caused by two strains each of *Streptomyces scabies* and *S. acidiscabies* on (A) radish and (B) wheat seedlings.
- a) Germinated seeds were not treated.
- b) Treated with sterile media.
- c) Inoculated with *S. scabies* strains 87-22, or
- *d) S. scabies* 84-34.
- e) Inoculated with *S. acidiscabies* strains 84-110, or
- *f) S. acidiscabies* 84-104.

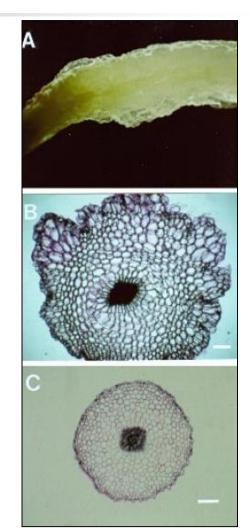
Plant bioassay Radish seedling assay

- Untreated.
- Treated with pure thaxotamin A.
- Filter-sterilized supernatant of *Streptomyces scabies* (stunting and radial swelling).
- *S. scabies* culture (necrosis and seedling collapse).

Schaad et al.,2001

Thaxtomins Thaxtomin A

- The primary pathogenicity determinant in *Streptomyces* species is the production of thaxtomin phytotoxins, of which, thaxtomin A is the predominant phytotoxin produced by pathogenic species in tuber tissue.
- Thaxtomins inhibit cellulose biosynthesis in higher plants and induce scab symptoms through necrosis and plant cell hypertrophy.
- When purified toxin is applied to plant tissue, it causes necrosis and cell hypertrophy.


Radial swelling is due to dramatic cell hypertrophy Toluidine blue staining procedure

- Stain composition:
- Phosphate buffer:
- Phosphate buffer Solution A (31.2 g/l NaH₂PO₄.2H₂O):12.75 ml
- Phosphate buffer Solution B (28.39 g/l Na₂HPO₄):12.25 ml
- Toluidine blue O 0.05 g/l
- Distilled water to make up to 50 ml.
- Toluidine blue O staining procedure (Ghemawat, 1977):
- Remove air bubbles from leaf strips by immersing in industrial alcohol for 10 min.
- Rinse off industrial alcohol with a solution of 0.05% toluidine blue O.
- Stain for 15 min in fresh solution of 0.05% toluidine blue O.
- Mount in 0.005% toluidine blue O, examine immediately or keep in a humid chamber for storage of more than 24 h and seal coverslip.

Thaxtomin A

Radial swelling is due to dramatic cell hypertrophy

- Dramatic cell hypertrophy on the hypocotyl of a radish seedling that was treated with thaxtomin A.
- Germinated seeds were incubated on agar containing:
- A and B: thaxtomin A 0.075 µM or
- C: Unamended agar for approximately 7 days before examination.
- Cross sections B and C were approximately 150 µm thick and were stained with toluidine blue.

Loria *et al.*,1997

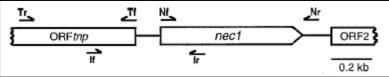
Thaxtomins Thaxtomin C Isolation of *Streptomyces ipomoeae*

- Lesions on sweet potato roots are washed in distilled water.
- Small pieces (1 mm³) of necrotic tissue are removed and crushed in 0.2 ml of sterile, distilled water containing 0.85% NaCl and 2mM mannitol.
- The suspension is streaked onto *Streptomyces ipomoeae* isolation medium (SUM) and plates are incubated for 3-5 days at 32-36°C in the dark.
- It takes about 5-7 days for blue/green aerial mycelia to develop with *S. ipomoeae* on SGM at 32°C.

Thaxtomins Thaxtomin C Sweet potato storage root assays

- Streptomyces ipomoeae isolates can be quickly screened for pathogenicity on storage roots and fibrous roots using plugs from 5-7 day-old SGM cultures for inoculum.
- Storage roots are washed, peeled, and 1-2 cm trimmed from each end.
- The storage roots or sweet potato vine segments are then surface disinfected for 10 min in 0.5% NaOCI.
- 1-cm-thick slices which are placed in sterile Petri dish moist chambers.
- A plug of agar is transferred from the culture and placed mycelium side down on the cut surface of the storage root slice.

Thaxtomins Thaxtomin C Sweet potato storage root assays


- The slice is incubated at 32°C for 5-10 days after which the callus which develops on the cut surface is gently scraped away with a knife or steel wool.
- Pathogenic isolates cause a dark brown to black necrosis that extends into the storage root tissue.
- Nonpathogenic isolates may grow superficially on the surface or sometimes cause superficial light brown discoloration, but do not induce necrosis extending into the slice.
- The pathogen infects both the fibrous roots and the fleshy storage roots of sweet potato.
- This pathogen produces thaxtomin C in host tissue but not in media; other described thaxtomins are not produced by this species.

Molecular Diagnosis of *Streptomyces*

- The most recently described spp. are differentiated on DNA homology, 16SrDNA and 16S-23S ITS sequencing supported by some morphological and nutritional differences.
- Genetic fingerprinting, 16SrDNA sequencing and fatty acid analysis do not correspond well with current classification.
- Other gene sequencing, mlst, may solve the problem.

Molecular Diagnosis of *Streptomyces* PCR Primers for *Streptomyces* spp.

- The primers for *nec1* and ORF*tnp*:
- Nf (5'- ATGAGCGCGAACGGAAGCCCCGGA-3') and Nr (5'-GCAGGTCGTCACGAA GGATCG-3'); and
- 2. Tf (5'- ATGACCGCATCCGACA GTCTGCCC-3') and Tr (5'-TTGAT GATCCGGCCGCCCTCGC-3'), respectively.

PCR amplification *nec1*-specific oligonucleotide primers amplify the 0.7-kb gene from all the *nec1*-containing strains.

- The primers for the intergenic region:
- If (5'- GTTGTCTTCGGCGAGGGCGTGCAGG-3') and
- Ir (5'- AGCGGAAGGATT TGCGACCACAACG-3').

PCR detection and identification of plant pathogenic bacteria

Name of primers and target DNA, sample treatment in the original article, variant of PCR protocol, reference and observations for plant pathogenic bacteria according to ISPP nomenclature. When the nomenclature reported in articles differs, the originally cited names of side of the table bacteria are indicated on the right

Genus Streptomyces							
Species	Primer name Target DNA	Variant of PCR protocol	Sample (treatment)	Reference	Synonyms/observations		
S. acidiscabies S. scabiei S. turgidiscabies	Nf/Nr nec1 gene	Conventional	Mycelium (boiled)	Burkhalid <i>et al.,</i> 1998	S. scabies		
S. scabiei S. turgidiscabies S. aureofaciens	Universalfer.Sneptompas pA/pH' Specific for S. scabies Scabl/SacbII Specific for S. turgidiscabies TurgI/TurgII Specific for S. aureofaciens AurI/AurII 16S rRNA gene	Conventional	Bacteria, potato tubers (DNA extraction)	Lehtonen <i>et al.,</i> 2004	S. scabies		
S. acidiscabies S.scabiei S.scabies var. achromogenes	16S-1F/16S-1R 16S rRNA gene Nec1F/Nec1R nec1 gene TxtA1/TxtA2 txtA gene (thaxtomin biosynthesis)	Conventional	Bacteria (DNA extraction)	Wanner, 2004	<i>S.scabies</i> var. <i>achromogenes</i> is not included in the ISPP list.		
Streptomyces spp.	NEC-F2/NEC-R2 (primers) Probe T nec1 gene Probe IS Internal standard DNA	Quantitative competitive quenching probe (QCQP)	Potato tubers, soil (DNA extraction)	Koyama <i>et al.,</i> 2006			
S. acidiscabies S. aureofaciens S. bottropensis S. europaeiscabiei S. scabiei S. stelliscabiei S. turgidiscabies New Streptomyces group	Species and strain-specific 16S rDNA sequences scab1m/scab2m scab1/scab2m ASE3/scab2m S. scabies and S. europaeiscabiei Stel3/ T2st2	Conventional	Bacteria (DNA extraction)	Wanner, 2006			

Genus Streptomyces

Palacio-Bielsa et al.,2009

PCR detection and identification of plant pathogenic bacteria

Name of primers and target DNA, sample treatment in the original article, variant of PCR protocol, reference and observations for plant pathogenic bacteria according to ISPP nomenclature. When the nomenclature reported in articles differs, the originally cited names of side of the table bacteria are indicated on the right

	S. stelliscabiei ASE3/ Aci2 Streptomyces newly identified group Stel3/ Aci2 S. bottropensis Aci1/ Aci2 S. acidiscabies Turg1m/ Turg2m S. turgidiscabies Aur1/ Aur2 S. aureofaciens				
Streptomyces spp.	NecF1/NecR1 (external) NecNF1/NecNR2 (internal) NecTqF1/NecTqR1 (primers) NecTqP1 (probe) nec1 gene	Nested Real-time (TaqMan)	Bacteria, potato tubers and soil (DNA extraction)	Cullen and Lees, 2007	
S. acidiscabies S. aureofaciens S.europaeiscabiei S. scabiei S. stelliscabiei S. turgidiscabies	16S-1F/16S 455-435 16S rDNA Nf/Nr nec1 gene TxtAB TxtAB1/ TxtAB2 TxtAB gene Tom3/Tom4 TomA gene Species-specific 16s rDNA ASE3/Scab2m (S. scabies and S. europaeiscabiei) ASE3/ Aci2 (Newly identified Streptomyces group) Aci1/ Aci2 (S. acidiscabies)	Conventional	Bacteria (DNA extraction)	Wanner, 2007	

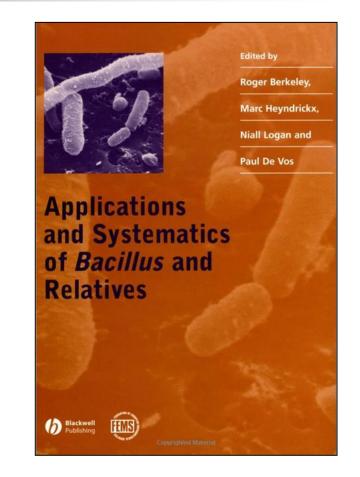
Genus *Streptomyces*

Palacio-Bielsa et al.,2009

Preservation

- Three short-term preservation methods:
- First, agar slope cultures may be stored at 4°C for few months.
- Second, spore suspensions can be mixed with soft water agar and kept at 4°C (Kutzner, 1972).
- Third, glycerol can be added to spore suspensions (final concentration, 10%, v/v) and stored at -20°C (Wellington and Williams, 1978).
- For long-term preservation, spore suspension was prepared in 20% glycerol and freezing at -20°C.
- Another procedure is the growth of strains in complex media (like trypticase soy broth [TSB] agar), addition of 20% glycerol plus 10% lactose, and storage in the vapor phase of liquid nitrogen.
- In addition, drying on unglazed porcelain beads (Lange and Boyd,1968), followed by soil culture, and lyophilization are used.

Identification of the bacterial pathogens Bacillus and Paenibacillus


Disease diagnosis and pathogen diagnostics

Applications and Systematics of Bacillus and Relatives

- Applications and Systematics of *Bacillus* and Relatives
- by Roger Berkeley, Marc Heyndrickx, Niall Logan and Paul De Vos (Editors).

Product Details

- Hardcover: 317 pages
- Publisher: 2002 by Blackwell Publishing company

Gram-Positive Bacteria Plant pathogenic genera

Domain Bacteria Phylum "Firmicutes" Class "Bacilli" Order Bacillales Family Bacillaceae (*Bacillus*) Family Paenibacillaceae (*Paenibacillus*) Class "Clostridia" Order Clostridiales

Family Clostridiaceae (Clostridium)

Nested genera in Bacillus

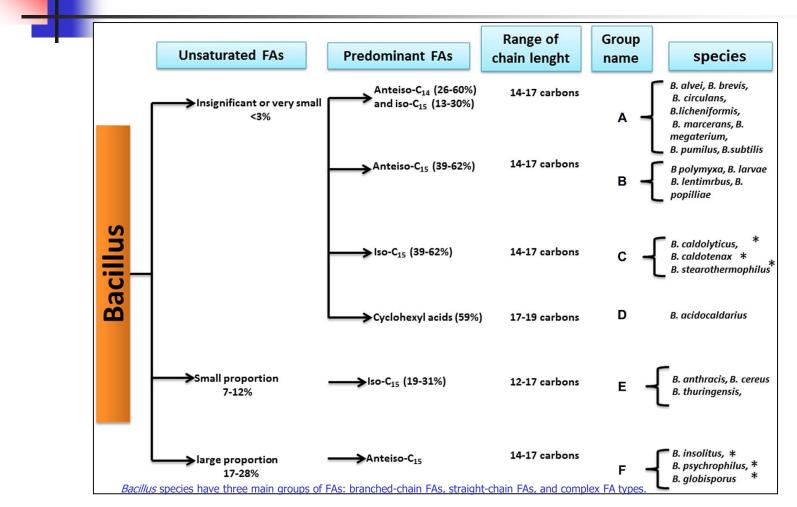
Another example of a large genus with nested genera is the *Bacillus* genus, in which the genera *Paenibacillus* and *Brevibacillus* are nested clades. There is insufficient genomic data at present to fully and effectively correct taxonomic errors in *Bacillus* (Wikipedia, 2012).

Numbers of species assigned to the genus *Bacillus* in different editions of *Bergey's Manual* up to 1974 (modified from Gordon 1981)

Bergey's Manual	Year	Number of species
1st edition	1923	75
2nd edition	1925	75
3rd edition	1930	93
4th edition	1934	95
5th edition	1938	146
6th edition	1948	33
7th edition	1954	25
8th edition	1974	Group I: 22
		Group II: 26

Phylogeny Bacillaceae family Base on 16S rRNA and ITS sequences

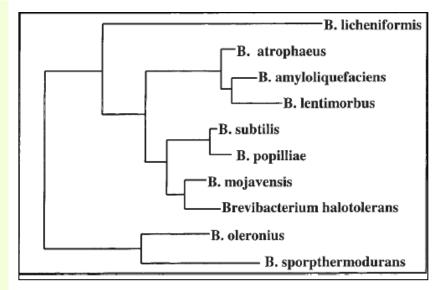
- Biodiversity of *Bacillus* spp:
- The molecular analysis of Bacillaceae species, using 16S rRNA and the 16S-23S ITS (internally transcribed spacer), to differentiate, in clusters, this bacterial family.
- Bacillus species may be divided into five or six groups (groups I–VI), based on 16S rRNA phylogeny or phenotypic features, respectively (Priest, 1993).
- ITS-PCR using the primers L1 and G1 to amplify the 16S-23S intergenic transcribed spacer region.


Phylogeny Bacillaceae family Antagonists and PGPR Bacillus groups

- Those Bacillus strains that are known to have the potential to protect plants from pathogens or pests or stimulate plant growth are attributed to two groups:
- 1. the *B. cereus* group, and
- 2. the *B. subtilis* group.
- The *B. cereus* group includes *B. anthracis, B. cereus, B. thuringiensis, B. mycoides, B. pseudomycoides,* and *B. weihenstephanesis*.
- The *B. subtilis* group includes *B. subtilis*, *B. pumilus*, *B. atrophaeus*, *B. licheniformis* and *B. amyloliquefaciens*.

Phylogeny *Bacillus* species classification based on 16S rRNA sequences

- The phylogenetic studies, based on 16S rRNA sequence, suggest five groups of closely related species.
- 1. Bacillus cereus,
- 2. B. megaterium,
- 3. B. subtilis,
- 4. B. circulans, and
- 5. B. brevis group.
- There is also mentioned a group of closely related bacteria, referred to as *Bacillus pumilus* subgroup, as it is included in *Bacillus subtilis* group.


Phylogeny *Bacillus* species classification based on the fatty acid patterns

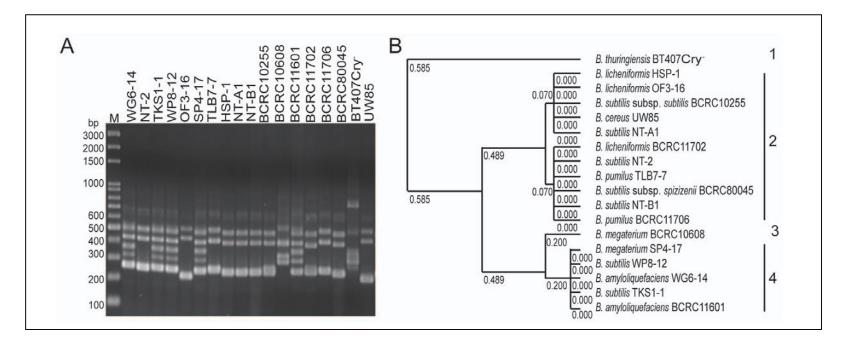
Kaneda,1977; Diomandé et al.,2015

Phylogeny Based on 16S rRNA sequences

 Neighbor joining tree for species within the *Bacillus* group, indicating that they are very closely related to each other by 16S rRNA gene sequence analysis.

Phylogeny

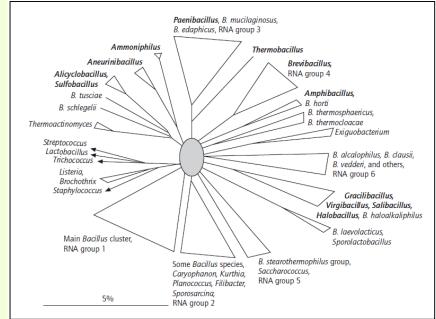
Comparative analysis of the 39 end 16S rRNA coding region reveals that at least the last 157 bp share extensive nucleotide identities with all 46 Bacillaceae species


- Phylogenetic relationships of 46 Bacillus, Brevibacillus, Paenibacillus, Virgibacillus species, and eight distant species inferred from the alignment of the 157 bp 39 end 16S rRNA coding region.
- Bootstrap values (expressed as percentages of 100 replications) are shown at branch points; values greater than 50% were considered significant.
- The bar represents the unit length of the number of nucleotide substitutions per site.
- Abbreviations:
- B., Bacillus;
- Br., Brevibacillus;
- G., Geobacillus;
- M., Marinibacillus;
- P., Paenibacillus;
- V., Virgibacillus.

Xu and Caté,2002

Phylogeny

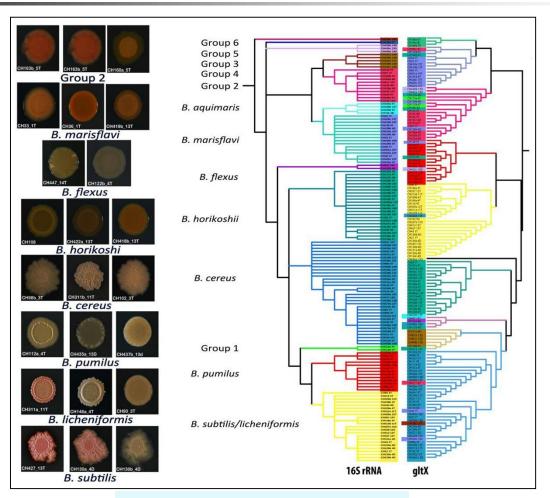
ITS-PCR fingerprint and UPGMA cluster analysis of Bacillus species. (A) ITS-PCR fingerprint and (B) UPGMA cluster analysis



ITS-PCR using the primers L1 and G1 to amplify the 16S-23S intergenic transcribed spacer region.

Hunag et al.,2012

Phylogeny *Bacillus* and novel genera originated from genus *Bacillus*


- Schematic outline of the phylogenetic diversity of 16S rDNA of aerobic, rod shaped and spore-forming, Grampositive bacteria including:
- 1. Species of *Bacillus*,
- 2. Genera that originated from the dissection of *Bacillus*, and
- 3. Species that were affiliated to novel genera because of their distinct phylogenetic positions.
- Bacillus species were found to form clusters that have been named RNA groups 1 to 6.

Phylogeny Based on 16S rRNA sequences and *gltX* gene (glutamyl-tRNA synthetase)

- We added one more gene, *gltX*, to increase phylogeny resolution.
- We amplified the 16S rRNA gene by PCR using previously published primer sequences 27F and 1492R(Lane, 1991).
- This included regions V1 to V3 (~275 bp of the 5' end region), considered to be the most informative for the *Bacillus* spp. (Goto *et al.*,2000).
- A 700 bp segment of the *gltX* gene (glutamyl-tRNA synthetase) was amplified using the primers
- gltX-for (5' CGYGGBGADGAYCAYATYT 3') and
- gltX-rev (5' CRATTTCMGCDCCRWARCT 3') and PCR-amplified by 30 cycles of 94°C for 30 s, 47°C for 1 min, 72°C for 2 min, and then a final elongation step at 72°C for 8 min with a thermocycler Palm-Cycler (Corbett Research).

Phylogeny Based on 16S rRNA sequences and *gltX* gene (glutamyl-tRNA synthetase)

Rodríguez-Torres et al.,2017

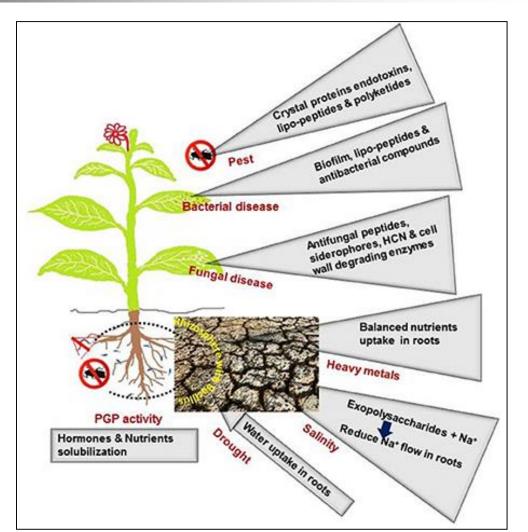
The Genus *Bacillus* History

- One of the earliest bacteria to be described was "Vibrio subtilis" by Ehrenberg in 1835.
- In 1872, Cohn renamed the organism *Bacillus subtilis* (Gordon,1981).
- The family Bacillaceae was first formulated by Fisher in 1895 (Gordon, 1981).

Diseases caused by Plant pathogenic *Bacillus* species

- Plant-associated bacilli are recognized either as plant pathogens, saprophytes, or as biological control agents.
- There are only three known phytopathogenic bacilli:

Bacillus megaterium pv. cerealis	White blotch of wheat
Bacillus circulans	Discoloration in heart tissue of mature plants. Also causes a disease in tissue cultures of date palm seedlings
Bacillus pumilus	Bacterial blotch of immature balady peach; ginger rhizome rot disease; Association with leaf and twig dieback of Asian pear cause by <i>P.</i> <i>syringae</i> .

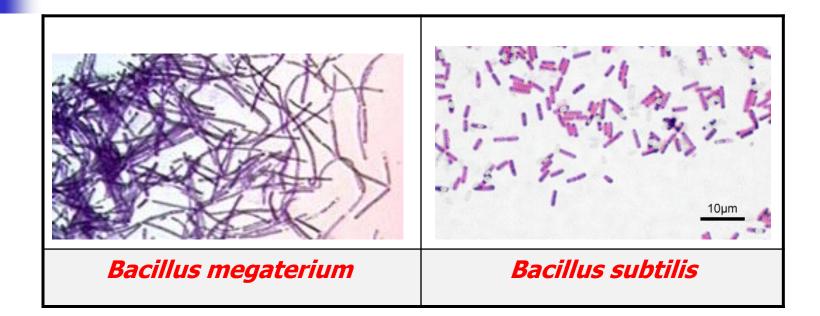

Bacilli generally are more easily isolated from soil than from plant roots (Ambrosini and Passaglia, 2017).

Bacillus species As biological control agents

- Bacillus species are common among the resident microflora of the inner tissues of various species of plants, including cotton, grape, peas, spruce and sweet corn, where these microorganisms play an important role in plant protection and growth promotion plant protection and growth promotion.
- Production of antibiotics and hydrolytic enzymes is a feature of many endophytic bacilli including:
- Bacillus cereus
- Bacillus pumilus
- Bacillus subtilis

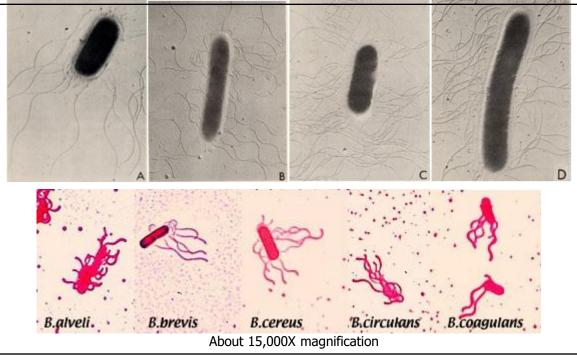
Bacillus species Direct effect of *Bacillus*-secretions on plant protection from adverse environments

The mitigating effects of *Bacillus*induced physiological changes in plants.



Radhakrishnan et al.,2017

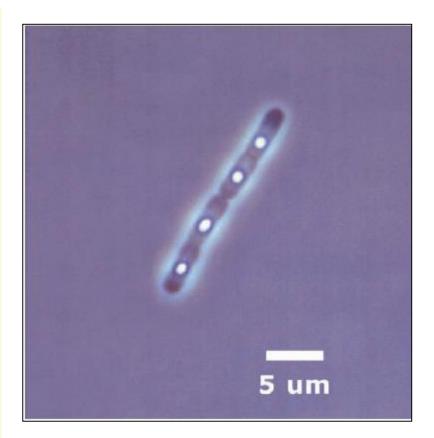
Major distinguishing characteristics of the genus *Bacillus*


- The features of the members of the genus *Bacillus* that distinguish it from other Bacillaceae (all endosporeformers e.g. *Sporolactobacillus, Clostridium*, etc.) are:
- Their aerobic nature, which may be strict (e.g. *Bacillus subtilis*) or facultative anaerobic (e.g. *Bacillus cereus*).
- Bacillus polymyxa ferments lactose and produces gas.
- Rod shape (Large rod in case of *Bacillus cereus*).
- Older cultures (more than 24 hours) of *Bacillus polymyxa* may appear as cocci.
- In both *Bacillus cereus* and *B. subtilis*, older cultures may stain pink, due to the deterioration of cell walls.
- Catalase production.

Cell size The size of bacilli range between 3 to 5 micrometers

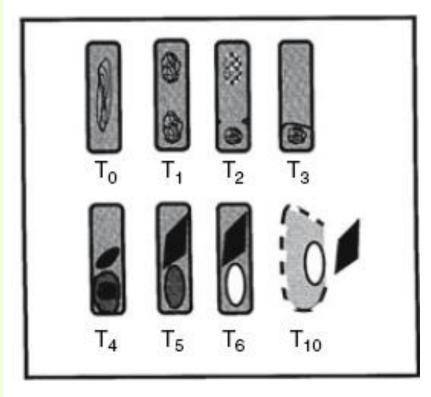
Flagella

- Individual cells of motile *Bacillus* species photographed on nutrient agar.
- A. B. subtilis, B. B. polymyxa; C. B. laterosporis, D. B. alveli.



Surface structures of *Bacillus* S-Layers

- Crystalline surface layers of protein or glycoprotein subunits, called S-layers, are found in members of the genus *Bacillus*.
- S-layers of individual strains of *Bacillus* have been shown to differ in molecular weight (40-200 kDa), the degree of glycosylation of the subunits, and the geometry of the S-layer lattice.
- Not all Bacillus species contain S-layers and some strains within a species may lack such a layer.


Resting spores or endospores *Bacillus* sp.

- Thick-walled resting spores or endospores in a *Bacillus* sp.
- Because of the thick wall the spores are much more refractive in phase-contrast microscopy than the surrounding vegetative cell.
- Spores are centrally placed in the cell.

Sporulation and crystal toxin production

- An artist's conception of growth, sporulation, and crystal toxin production in *B. thuringiensis* subsp. *kurstaki*.
- Endotoxin crystals of *B.* thuringiensis may be detected by phase contrast microscopy or by staining with 0.5% aqueous basic fuchsin or TB carbol fuchsin.
- The other members of the *B. cereus* group do not produce endotoxin crystals that can be detected by staining.
- The cells were grown in liquid GYS medium as described in the text.

Origins of isolates of *Bacillus* spp.

The Prokaryotes (chapter 1.2.16),2006

Name of Bacillus species Habitats from which isolated B. subtilis Soil, water Thermal acid water and soil B. acidocaldarius B. alcalophilus pH 10 enrichment from soil B. alvei Soil, diseased bee larvae B. amylolyticus Soil B. anthracis Anthrax-diseased animals B. azotoformans Soil B. badius Feces, foods, marine sources B. brevis Soil, foods B. cereus Soil. foods B. circulans Soil B. coagulans Acid foods B. fastidiosus Soil, poultry litter B. firmus Soil, salt marshes B. globisporus Soil, water B. insolitus Soil B. larvae Diseased bee larvae B. laterosporus Soil, water B. lautus Soil, feces B. lentimorbus Diseased honeybee larvae B. lentus Soil. foods B. licheniformis Soil B. macerans Plant materials, food B. macauariensis Subantarctic soil B. marinus Marine sediment B. megaterium Soil B. mycoides Soil B. pabuli Soil, fodder B. pantothenicus Soil B. pasteurii Soil, water, sewage B. popilliae Diseased scarabid beetles B. psychrophilus Soil. water B. pumilus Soil B. schlegelii Lake sediment B. sphaericus Soil, water sediments, foods B. stearothermophilus Soil, hot spring, foods B. thermoglucosidasius Soil B. thuringiensis Soil, foods B. validus Soil

Based on Claus and Berkeley (1986).

Bacillus plasmids Phenotype associated with plasmid

Bacterium	Plasmid	DNA size (kb)	Phenotype associated with plasmid
B. anthracis	pXO1	168	Exotoxin (lethal factor, edema factor, protective antigen)
	pXO2	85.6	Capsule
B. cereus	pBC7	69	Bacteriocin
	pBC16	4.3	Tetracycline resistance
B. pumilus	pBL10	6.8	Bacteriocin
B. subtilis	pIM13	2.2	Erythromycin resistance
B. subtilis (natto)	pLS19	5.4	Polyglutamate production
	pLS20	55	Self-transmissible plasmid, which also promotes transfer of other plasmids
B. thuringiensis	pXO12	112.5	Production of insecticidal crystal protein, and is a self-transmissible plasmid, which can co-transfer unrelated plasmids
Bacillus species	pTB19	26	Kanomycin and tetracycline resistance
(thermophilic)	pTB20	4.3	Tetracycline resistance

The Prokaryotes (chapter 1.2.16),2006

Production of antibiotics by some *Bacillus* spp.

Species	Antibiotic
B. subtilis	Subtilin ^a
	Surfactin ^b
	Bacilysin ^a
	Difficidin ^e
	Oxydifficidin ^e
	Bacillomycin F ^d
	Mycobacillin ^d
B. brevis	Gramicidin S ^a
	Lincar Gramicidin ^a
	Tyrocidin ^a
B. licheniformis	Bacitracin ^a
	Proticin
B. pumilus	Pumilin [®]
	Tetain
B. mesentericus	Esperin ^a
B. polymyxa	Polymyxin°
	Colistin [°]
B. thiaminolyticus	Octopytin ^a
	Baciphelacin ^a
B. circulans	Circulin ^e
	Butirosin ^a
B. laterosporus	Laterospuramine ^a
-	Laterosporin ^a
B. cereus	Biocerin ^a
	Cerexin ^a

^aAnti-Gram-positive bacteria. ^bInhibitor of fibrin clotting. [°]Broad spectrum antibiotic. ^dAnti-fungal antibiotic. [°]Anti-Gram-negative bacteria.

The importance of *Bacillus* species in the production of industrial enzymes

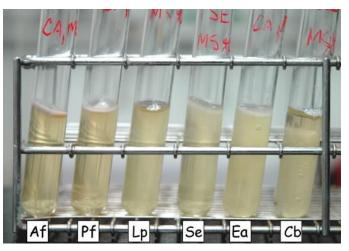
- The global market for industrial enzymes is considered to total 1.6 billion US dollars.
- The market is divided as follows:
- Technical enzymes (detergent proteases and amylases and textile): c. US\$1 billion
- Food enzymes (baking, beverage and dairy): c. US\$0.5 billion
- Feed enzymes (animal feed and other): c. US\$0.1 billion.

Thioglycollate Agar Aerobic and Anaerobic Growth The genera *Bacillus and Clostridium*

- Before inoculation, the medium is steamed (to melt the agar and drive out oxygen), cooled to 45-50°C, and then inoculated.
- Cystine and sodium thioglycollate are included in the medium to maintain a low oxidation-reduction potential.
- Agar decreases the diffusion of oxygen into the medium.
- Resazurin is used as an indicator of oxygen; this compound is pink or red in the oxidized state and colorless when reduced.
- The color may not be seen if good growth is present.
- Glucose is included as a fermentable energy source although some clostridia can ferment amino acids in the yeast extract and casitone; any of these organic compounds may be respired by various aerobes and facultative anaerobes.

Thioglycollate Agar

Component	Amount (grams/L)
Yeast extract	5
Casitone	15
Glucose	5
Sodium chloride	2.5
Cystine	0.5
Sodium thioglycollate	0.5
Resazurin	0.001
Agar	0.75


Thioglycollate Agar Modified

Anaerobic Agar	
Trypticase	20 g
Glucose	10 g
Sodium chloride	5 g
Agar	15 g
Sodium thioglycolate	2 g
Sodium formaldehyde sulfoxylate	1 g
Distilled water	1 liter

- pH=7.2
- Inoculate a tube of anaerobic agar with a small loopful of nutrient broth culture by stabbing to the bottom of the culture tube.
- At incubation temperatures below 45°C the growth should be recorded at 3 and 7 days.

Thioglycollate Agar Aerobic and Anaerobic Growth The genera *Bacillus* and *Clostridium*

Strict aerobes will only grow near the surface of the agar (Af, Alcaligenes faecalis, Pf, Pseudomonas fluorescens); Aerotolerant anaerobes grow at the same rate in presence or absence of oxygen(Lp, Lactobacillus plantarum); Facultative anaerobes will grow throughout the tube, but will display more growth near the top of the tube (Se, Staphylococcus epidermidis; Ea, Enterobacter aerogenes); Strict aerobes will only grow in the presence of oxygen, at the top of the tube(Cb, Clostridium butryricum). Strict anaerobes will only grow in the bottom of the tube where oxygen is absent.

Virtual Microbiology

Media used for the isolation and cultivation of *Bacillus* spp.

B. acidocaldarius	Part A: (NH ₄) ₂ SO ₄ , 0.4; MgSO ₄ , 1.0; CaCl ₂ ·2H ₂ O, 0.5; KH ₂ PO ₄ , 6.0; distilled H ₂ O, 1 liter; pH adj. to 4.0
	Part B: glucose, 2.0; yeast ext., 2.0 distilled H ₂ O, 1 liter
	Combine A and B after sterilization
B. alcalophilus	Part A: glucose, 1.0; peptone, 5.0; yeast ext., 5.0; KH ₂ PO ₄ , 10.0 MgSO ₄ ·7H ₂ O, 0.2, distilled H ₂ O, 900ml.
	Part B: Na ₂ CO ₃ ·10H ₂ O, 20; distilled H ₂ O, 100ml.
	Combine A and B after sterilization (final $pH = 10.5$)
B. azotoformans	Peptone, 10.0; Na ₂ HPO ₄ ·12H ₂ O, 3.6; MgSO ₄ ·7H ₂ O, 0.03; MnSO ₄ ·H ₂ O, 0.05; KH ₂ PO ₄ , 1.0; NH ₄ Cl, 0.5; CaCl ₂ ·2H ₂ O, 0.1; distilled H ₂ O, 1 liter.
B. brevis	K ₂ HPO ₄ , 0.2; MgSO ₄ ·7H ₂ O, 0.02; NaCl, 0.02; FeSO ₄ ·7H ₂ O, 0.01; MnSO ₄ ·H ₂ O, 0.01; betaine, betaine · HCl or valine, 0.05 M; agar, 16.0; distilled H ₂ O, 1 liter.
B. fastidiosus	K ₂ HPO ₄ , 0.8; KH ₂ PO ₄ , 0.2; MgSO ₄ ·7H ₂ O, 0.05; CaCl ₂ ·2H ₂ O, 0.05; FeSO ₄ ·7H ₂ O, 0.015; MnSO ₄ ·H ₂ O, 0.01; uric acid, 10.0; distilled H ₂ O, 1 liter.
B. lentus	Peptone, 10.0; meat ext., 10.0; agar, 15.0; distilled H ₂ O, 1 liter. adj. pH to 7.0-7.5; after sterilization, add 100g urea, steam for 10min.
B. licheniformis	Peptone, 5.0; meat ext., 3.0; KNO ₃ , 80.0; distilled H ₂ O, 1 liter; adj. pH to 7.0; fill glass-stoppered bottle to top for anacrobic conditions.
B. marinus	Peptone, 5.0; yeast ext., 1.0; FePO ₄ ·4H ₂ O, 0.01; agar, 15.0; aged sea water, 750ml; distilled H ₂ O, 250ml; adj. pH to 7.6.
B. pantothenicus	Nutrient broth + 4% (w/v) NaCl
B. pasteurii	Nutrient broth $+2\%$ (w/v) urea
B. schlegelii	 Na₂HPO₄·2H₂O, 4.5; KH₂PO₄, 1.5; NH₄Cl, 1.0; MgSO₄·7H₂O, 0.2; CaCl₂·2H₂O, 0.01; ferric ammonium citrate, 0.005; NaHCO₃, 0.5; trace element soln, 5ml (ZnSO₄·7H₂O, 0.1; MnCl₂·4H₂O, 0.03; H₃BO₃, 0.3; CoCl₂·6H₂O, 0.02; CuCl₂·2H₂O, 0.001; NiCl₂·6H₂O, 0.02; Na₂MoO₄·2H₂O, 0.03; distilled H₂O, 1 liter) Other: 65C, atmosphere of 0.05 atm. O₂ + 0.01 atm. CO₂ + 0.45 atm. H₂
B. stearothermophilus	Nutrient agar; incubate cultures at 55°C

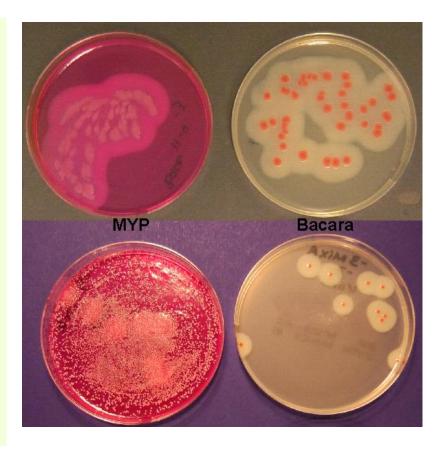
^bMost other *Bacillus* cultures will grow on nutrient broth and nutrient agar.

Based on Claus and Berkeley (1986).

The Prokaryotes (chapter 1.2.16),2006

Identification of *Bacillus* spp.

- The identification of *Bacillus* species is difficult, and molecular methods are the basis for distinguishing species within this very large, complex genus.
- Isolates may be identified tentatively to the genus *Bacillus* if they have the ability to hydrolyze gelatin, utilize citrate, reduce nitrate, and ferment L-arabinose and mannitol.
- Any isolate that is positive for all five of these phenotypic tests probably belongs to the *Bacillus subtilis* group of closely related species.
- This may include *B. mojavensis* isolates which are endophyte, nonpathogenic to plants, antagonistic to fungi, and to enhance plant growth.
- Indole production is negative for some species such as *subtilis*, *polymyxa* and *cereus*.


Colony morphology Bacillus spp.

Bacillus subtilis	Service Barriel Ba	The cream colored colonies are larger, but not as large as <i>B.</i> <i>cereus</i> . The margin is undulate, with circular form and flat elevation.	Bacillus cereus	R	Colonies are large, irregular and flat with an undulate margin
Bacillus polymyxa		Colonies are white, large, irregular and flat with an undulate margin	Bacillus megaterium	ieLibrary.org © Hedetniemi and Liao	White/ round, glossy shade yellow colored colony with smooth and entire margin.

Virtual Microbiology

Colony characteristics of *B. cereus*

- 1. Colonies of *Bacillus cereus* grown on MYP medium are pink and lecithinase positive, but other bacteria are not inhibited and can interfere with isolation of *B. cereus*.
- 2. Colonies of *B. cereus* grown on Bacara medium are pink-orange and are lecithinase positive, but other organisms are inhibited.

Characteristics used in the identification of *Bacillus* spp.

Bacillus species/group	anthracis	cereus	licheniformis	megaterium	megaterium pv. cerealis	subtilis	coagulans	alvei	brevis	circulans	circulans ^b	latero-porus	mace-rans	poly-mixa
Gram reaction	+	+	+	+	+	+	+	I	I	Ι	-	I	I	Ι
Motility ^a	-	+	+	+	1922	+	+	+	+	+	+	+	+	+
Oval spores	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Spore position Terminal Central Subterminal	-+	- + -	- + -	- + -	+	-+	+ + +	++++	+ + +	+ + +	- - +	- + -	+ - -	++++++
Swelling of bacillary body	-	-		1177		-	v	+	+	+	+	+	+	+
Growth at 45 Ċ	-	v	+	v	-	+	+	v	v	v	+	v	v	-
Growth at pH 5.7	+	+	+	+	+	+	+	2	v	v	ND	-	+	+
Growth in 7% NaCl	+	v	+	+	1 <u>11</u> 7	+	-	-	-	v	-	-		
Utilization of citrate	v	+	+	+	+	+	v	-	v	-			12	-
Anaerobic growth in glucose broth	+	+	+	-	-		+	+	-	v	+	+	+	+
Acid from: Arabinose Mannitol Xylose	-		+ + +	v v v	ND + +	+ + +	v v v	-	- V V	+ + +	+ - +	+	+ + +	++++++
VP test	+	+	+	-		+	v	+	-	-	-	-	-	+
Starch hydrolysis	+	+	+	+	+	+	+	+	-	+	+	1344	+	-

^a All species may produce non-motile cells

Schaad et al.,1998

Characteristics used in the identification of *Bacillus* spp.

-	Plant P	athogens				Oth	er Sp	ecies			
	circulans	megaterium pv. cerealis	anthacis	cereus	licheniformis	subtilis	coagulans	alvei	brevis	laterosporus	macerans
Gram reaction	Ι	+	+	+	+	+	+	I	Ι	Ι	Ι
Motility ²	+	-	-	+	+	+	+	+	+	+	+-
Spore position											
Terminal	÷	-	-	-	-	-	+	+	+	-	÷
Central	+	+	+	+	+	+	+	+	+	+	-
Subterminal	+	-	-	-	-	-	+	+	+	-	-
Swelling of bacillary body	+	-	-	-	-	-	V	+	+	+	+
Growth at 45°C	V	-	-	V	+	+	+	V	v	V	v
Growth at pH 5.7	V	+	+	+	+	+	+	-	v	-	+
Growth in 7% NaCl	V	-	+	V	+	+	-	-	-	-	-
Utilization of citrate	-	+	v	+	+	+	V	-	v	-	-
Anaerobic growth in glucose broth	v		+	+	+	-	+	+	-	+	+
Acid from:											
Arabinose	+	ND	-	-	+	+	v	-	v	+	+
Mannitol	+	+	-	-	+	+	v	-	v	+	+
Xylose	+	+	-	-	+	+	V	-	v	-	+
Voges-Proskaur test	-	-	+	+	+	+	v	+	-	-	-
Starch hydrolysis	+	+	+	+	+	+	+	+	-	-	0
+, 80% or more strains positive; +D, 80% or m	nore strains	delayed posit	tive; V,	betwe	en 21-	-70%	of stra	ins po	sitive;	-, 80%	or
more strains negative; ND, not determined.											
¹ Adapted from Cowan (6) and Hosford for	Bacillus me	gaterium pv.	cereali	is (12)	and L	eary a	nd Ch	un for	B. cin	culans	(15)
² All species may produce non-motile cells.											

Schaad et al.,2001

								Charao	cteristi	ca						
Bacillus species	Rods 1.0 µm wide or wider	Parasporal bodies	Growth in anaerobic agar	Growth at 50°C	Growth at 65°C	Growth in 4% NaCl	Growth in 7% NaCl	Catalase	Voges-Proskauer reaction	Acid from glucose	Acid and gas in glucose	NO ₃ reduced to NO ₂	Starch hydrolyzed	pH in V-P medium ≪6.0	Hydrolysis of casein	Lecithinase
anthracis	+	_	+	_	_	+	+	+	+	+	_	+	_	+	+	+
megaterium	+	_	_	_	_	ND	+	+	_	+	_	V	_	V	+	_
cereus	+	V	+	_	_	ND	+	+	+	+	_	+	+	+	+	+
thuringiensis	+	+	+	_	_	+	+	+	+	+	_	+	+	+	+	+
lichenformis	_	_	+	+	_	+	+	+	+	+	_	+	+	V	+	_
subtillis	_	_	_	+	_	+	+	+	+	+	_	+	+	V	+	_
pumilus	_	_	_	+	_	+	+	+	+	+	_	_	_	+	+	_
firmus	_	_	_	_	_	+	+	+	_	+	_	+	+	_	+	_
coagulans	V	_	+	+	_	_	_	+	+	+	_	V	+	+	ν	_
polymyxa	_	_	+	_	_	_	_	+	+	+	+	+	+	V	+	_
macerans	_	_	+	+	_	_	_	+	_	+	+	+	+	_	_	_
circulans	_	_	V	+	_	V	V	+	_	+	_	V	+	V	v	_
stearothermophilus	V	_	_	+	+	V	_	V	_	+	_	V	_	+	v	_
alvei	V	_	+	_	_	V	_	+	+	+	_	_	_	+	+	_
laterosporus	_	+	+	+	_	V	_	+	_	+	_	+	_	_	+	+
brevis	_	_	_	+	_	_	_	+	_	+	_	V	_	_	+	_
sphaericus	V	_	_	_	_	V	V	+	_	_	_	_	_	_	ν	_
larvae	_	_	+	_	_	_	+	_	_	+	_	V	_	_	+	ND
popilliae	_	+	+	_	_	_	+	_	_	+	_	_	_	_	_	ND
lentimorbus	_	_	+	_	_	_	_	_	_	+	_	_	_	_	_	ND
pasteurii	_	_	+	_	_	+	+	ND	_	ND	_	+	_	ND	v	_
, pantothenticus	_	_	+	v	_	+	+	+	_	+	_	V	_	+	v	_

From Reboli and Farrar (1988).

The Prokaryotes (chapter 1.2.17),2006

Species ^a	Mobility	Catalase Production	Parasporal Bodies	Lipid Globules in Protoplasm	Lecithovitellin Reaction	Citrate Utilization	Anaerobic Growth	V-P Reation	pH in V-P Medium < 6.0	Growth at 50° C	Growth at 60° C	Growth in 7% NaCI	Acid from AS Glucose	Acid + Gas from AS Glucose	Nitrate Reduction	Casein Hydrolysis	Strach Hydrolysis	Propionate Utilization
Morphologic group 1																		
B megaterium	٧	+	-	+	-	+	-	-	٧	-	-	+	+	-	v	+	+	n
B cereus	+	+	\approx	+	+	+	+	+	+	-	-	+	+	-	+	+	+	n
B cereus subsp mycoides	-	+	\overline{a}	+	+	+	+	+	+	\overline{a}	-	+	+	-	+	+	+	п
B anthracis	-	+		+	+	v	+	+	+	-	-	+	+	-	+	+	+	n
B thuringiensis	+	+	+	+	÷	+	+	+	+	-	-	+	+	-	+	+	+	n
B licheniformis	+	+	-	-	-	+	+	+	+	+	-	+	+	-	+	+	+	+
B subtilis	+	+	-	-	-	+	-	+	٧	V	-	+	+	-	+	+	+	-
B pumilus	+	+	2	-	-	+	-	+	+	v	-	+	+	-	-	+	-	÷
B firmus	v	+		-	-	-	-	(**))	-	-	-	+	+	-	+	+	+	-
B coagulans	+	+	~	-	-	v	+	+	+	+	v	2	+	-	v	٧	+	-
Norphologic group 2																		
B polymyxa	+	+	\sim	-	-	-	+	+	V	-	÷ –	-	+	+	+	+	+	n
B macerans	+	+	\overline{a}	-	-	v	+	-	+	+	-	-	+	+	+	-	+	n
B circulans	v	+	-	-	-	v	v	-	+	v	-	٧	+	-	v	v	÷	n
B stearothermophilus	+	v	-	-	\leftarrow	-	-	-	+	+	+	2	+	-	V	v	+	n
B alvei	+	+		-	-	-	+	+	+	-	-		+	-	-	+	+	n
B laterosporus ^e	+	+	-	-	(+)		+	-	+	-	-	_	+	-	+	+	-	n
B brevis	+	+	-	-	-	v	-	-	4	v	V	-	+	-	v	+	-	n
Morphologic group 3																		
B sphaericus	+	+	-	-	-	v	-	-	4		-	v	12		-	٧	-	n

V-P, Voges-Proskauer; AS, ammonium salt; +, more than 85 percent of strains examined by Gordon et al. (See References) were positive; -, more than 85 percent of strains negative; v, variable; n,test not applicable; (+), under colony which must be scraped off to see positive reaction.
 ^b Species grouped according to the classification scheme of Gordon et al. Morphologic group 1: sporangium not swollen by spore; spore ellipsoidal or cylindrical, central or terminal; Gram positive. Morphologic group 2: sporangium swollen by ellipsoidal spore; spore central or terminal; Gram variable. Morphologic group 3: sporangium swollen by spore; spore spherical, subterminal, or terminal; Gram variable.
 ^a Sporangium and spore have characteristic cance shape.

	Catalase	V-P reaction	Growth in anaerobic agar	Growth at 50°C	Growth in 7% NaCl	Acid and gas in glucose	NO ₃ reduced to NO ₂	Starch hydrolyzed	Growth at 65°C	Rods 1.0µm wide or wider	pH in V-P medium <6.0	Acid from glucose	Hydrolysis of casein	Darasmoral hodias
B. megaterium	+	_	_	_	+	_	ν	+	_	+	V	+	+	
B. cereus	+	+	+	_	+	_	+	+	_	+	+	+	+	
B. thuringiensis	+	+	+	_	+	_	+	+	_	+	+	+	+	
B. licheniformis	+	+	+	+	+	_	+	+	_	_	V	+	+	
B. subtilis	+	+	_	+	+	_	+	+	_	_	V	+	+	
B. pumilus	+	+	_	+	+	_	_	_	_	_	+	+	+	
B. firmus	+	-	_	_	+	-	+	+	_	_	_	+	+	
B. coagulans	+	+	+	+	_	-	ν	+	_	V	+	+	V	
B. polymyxa	+	+	+	_	_	+	+	+	-	_	V	+	+	
B. macerans	+	-	+	+	_	+	+	+	-	_	-	+	_	
B. circulans	+	_	V	+	V	_	ν	+	_	_	V	+	V	
B. stearothermophilus	V	_	_	+	_	_	ν	+	+	V	+	+	_	
B. alvei	+	+	+	_	_	_	_	+	_	V	+	+	+	
B. laterosporus	+	-	+	+	_	_	+	_	-	_	-	+	+	
B. brevis	+	-	-	+	-	-	ν	_	-	-	-	+	+	
B. larvae	_	-	+	-	+*	-	ν	_	-	-	-	+	+	
B. popilliae	_	-	+	-	$+^{a}$	-	-	_	-	_	-	+	-	
B. lentimorbus	_	-	+	-	_	-	_	_	-	_	-	+	-	
B. sphaericus	+	_	_	_	V	_	_	_	_	V	_	_	V	

+, Greater than 85% of strains examined by Gordon, Haynes, and Pang (1973) positive; -, greater than 85% of strains negative; V, variable character.

"Growth in 2% NaCl agar.

The Prokaryotes (chapter 1.2.16),2006

+, >89% strains positive; D, 11–89% strains positive; -, <11% strains positive; numeric values indicate the proportion of the four strains that were positive (strain 12DX was negative in all cases of variable reactions); ND, no data.

Character	B. insolitus*	B. licheniformis†	B. megaterium†	B. pumilus†	B. subtilis†‡	Endophytic isolat	
Spore position/	Terminal	Central	Central	Central	Central	Terminal	
Spore shape	Round	Oval	Oval	Oval	Oval	Ellipsoidal	
Vacuoles in cytoplasm	+	-	+	_	_	+	
Cell width > 1·0 µm	+	_	+	_	_	+	
Motility	D	+	+	+	+	_	
Anaerobic growth	_	+	_	_	_	_	
Voges-Proskauer	_	+	_	+	+	_	
Dxidase	+	+	_	+	+	+	
Nitrate reduction	_	+	_	_	+	_	
Hydrolysis of:							
Casein	_	+	+	+	+	_	
Gelatin	_	+	+	+	+	_	
Starch	_	+	+	_	+	_	
Urea	_	_	+	_	_	_	
Acid from:							
Arabinose	_	+	+	+	_	+	
Cellobiose	+	+	+	+	+	_	
Galactose	ND	+	+	+	D	_	
Glucose	_	+	+	+	+	+	
Inositol	ND	+	+	_	+	+	
Lactose	_	D	D	D	_	_	
Mannitol	_	+	+	_	+	+	
Maltose	_	+	+	D	+	+	
Mannose	_	+	D	+	+	+	
Raffinose	+	+	_	D	+	0.75	
Rhamnose	ND	_	_	_	_	+	
Sorbitol	ND	_	D	_	+	_	
Trehalose	_	+	+	+	+	_	
Xylose	_	+	+	+	D	0.75	
Use of:							
Acetate	ND	+	+	_	D	_	
Citrate	_	+	+	+	+	+	
Gluconate	ND	+	+	_	_	+	
Propionate	ND	+	_	_	_	_	
Arginine dihydrolase	ND	+	_	_	_	_	
Phenylalanine deaminase	_	_	+	_	_	_	
Growth in:			-				
5% NaCl	_	+	+	+	+	+	
10% NaCl	_	_	_	+	D	+	
Growth at 50 °C	_	+	_	_	_	_	

Data from Priest et al. (1988).

Distinguishing

phenotypic

characteristics of

plant-associated

Bacillus species.

Reva et al.,2002

Data from Nakamura *et al.* (1999).

Key differential characteristics of the *Bacillus* spp. Summary of test results

species	Lecithinase	Motility	Penicillin susceptibility	Crystal formation
Bacillus anthracis	+*	-	S	-
Bacillus cereus	+	+	R	-
Bacillus megaterium	-	+	R	-
Bacillus mycoides	+	-	R	-
Bacillus thuringiensis	+	+	R	+
Bacillus circulans	-	+	R	-
Bacillus coagulans	-	+	R	-
Bacillus licheniformis	-	+	R	-
Bacillus pumilus	-	+	R	-
Bacillus subtilis	-	+	R	-
Bacillus sphaericus	-	+	R	-
	1	1	1	1

* *B. anthracis* may produce narrow lecithinase zones and colony may need to be scraped away to see reaction.

Identification of *Bacillus* **species**

Species	Motility	Catalase	Parasporal bodies	Lipid globules in protoplasm	Lecthovitellin reaction	Citrate Utilization	Anaerobic Growth	V-P Reaction	PH in V-P medium <6	Growth at 50°C	Growth at 60°C	Growth in 7% NaCl	Acid from AS glucose	Acid and gas from AS glucose	Nitrate reduction	Canoin Hudaohaia	Starch Hydrolysis	Propionate Utilization
Morphological Group 1																		
B. megaterium	V	+	-	+	-	+	-	-	V	-	-	+	+	-	V	+	+	N
B. cereus	+	+	-	+	+	+	+	+	+	-	-	+	+	-	+	+	+	N
B. cereus mycoides	-	+	-	+	+	+	+	+	+	-	-	+	+	-	+	+	+	N
B. anthracis	-	+	-	+	+	V	+	+	+	-	-	+	+	-	+	+	+	N
B. thuringiensis	+	+	+	+	+	+	+	+	+	-	-	+	+	-	+	+	+	N
B. licheniformis	+	+	-	-	-	+	+	+	+	+	-	+	+	-	+	+	+	+
B. subtilis	+	+	-	-	-	+	-	+	V	V	-	+	+	-	+	+	+	-
B. pumulis	+	+	-	-	-	+	-	+	+	V	-	+	+	-	-	+	-	-
B. firmus	v	+	-	-	-	-	-	-	-	-	-	+	+	-	+	+	+	-
B. coagulans	+	+	-	-	-	V	+	+	+	+	V	-	+	-	V	V	+	-
	_				-	Morph	ologica	al Grou		_			_					
B. polymyxa	+	+	-	-	-	-	+	+	V	-	-	-	+	+	+	+	+	N
B. mascerans	+	+	-	-	-	V	+	-	+	+	-	-	+	+	+	-	+	N
B. circulans	V	+	-	-	-	V	V	-	+	V	-	V	+	-	V	V	+	N
В.	+	V	-	-	-	-	-	-	+	+	+	-	+	-	V	V	+	N
stearothermophilus																		
B. alvei	+	+	-	-	-	-	-	+	+	-	-	-	+	-	-	+	+	N
B. laterosporus*	+	+	-	-	(+)	-	+	-	+	-	-	-	+	-	+	+	-	N
B. brevis	+	+	-	-	-	V	+	-	-	V	V	-	+	-	V	+	-	N

Identification of *Bacillus* **species** Biochemical characteristics of Morphological Group 1

	B. megaterium	B. cereus	<i>B. cereus</i> var .mycoides	B. anthracis	B. thuringiensis	B. licheniformis	B. subtilis	B. pumilus	B. firmus	B. coagulans
LV (egg yolk) reaction	-	+	+	+	+	-	-	-	-	-
Citrate utilization	+	+	+	v	+	+	+	+	+	v
Anaerobic growth	-	+	+	+	+	+	-	-	-	+
V-P reaction	-	+	+	+	+	+	+	+	-	v
Nitrate reduction	v	+	+	+	+	+	+	-	+	v
Indole production	-	-	-	-	-	-	-	-	-	-
Growth in 7% NaCl	+	+	+	+	+	+	+	+	+	-
Starch hydrolysis	+	+	+	+	+	+	+	-	+	+
Casein hydrolysis	+	+	+	+	+	+	+	+	+	v
Gelatine hydrolysis	+	+	+	+	+	+	+	+	+	-
Urease activity	v	v	v	-	v	v	v	-	-	-
*Acid from: Glucose	+	+	+	+	+	+	+	+	v	+
Mannitol	v	-	-	-	-	+	+	+	+	v
Xylose	v	-	-	-	-	+	+	+	v	v
Arabinose	v	-	-	-	-	+	+	+	v	v
Haemolysis (blood agar)		+	+	-	+					
Motility		+	-	-	+					
Propionate utilization						+	-			
Parasporal bodies		-	-	-	+					
Tyrosine hydrolysis	+/-	+	+/-	-	+	-	-	-	-/+	-
Growth in 0,001% lysozyme	-	+	+	+	+	-	-/+	+/-	-	-

Lysozyme test

- Inoculate a loopful of a broth culture into a tube of the Lysozyme Resistance Medium and into a control tube of nutrient broth.
- After incubation for up to 7 to 14 days observe for growth or its absence.
- Members of the *B. cereus* group are resistant to lysozyme.
- Lysozyme Resistance Medium

Nutrient broth 99 ml

Lysozyme solution 1 ml

(10,000 enzyme units/ml of distilled water)

The members of the *B cereus* group spp. include *B. cereus*, *Bacillus anthracis*, *Bacillus thuringiensis*, *Bacillus mycoides*, *Bacillus pseudomycoides* and *Bacillus weihenstephanensis*.

Tyrosine test

- Inoculate plates of the Tyrosine Decomposition Agar with one streak of inoculum and incubate.
- Observe at up to 21 days for clearing of the tyrosine crystals around and below the growth.
- *B. cereus* and other members of the *B. cereus* group except for *B. anthracis* readily decompose tyrosine.
- Tyrosine Decomposition Agar:
- L-Tyrosine 0.5 g
- Distilled water 10 ml
- Sterile nutrient agar 100 ml

Casein decomposition test

- Inoculate plates of milk agar with one streak of inoculum and examine after incubation at 7 and 14 days for clearing of the casein around and underneath the growth.
- Casein Decomposition; Milk Agar
- Agar 1 g in 50 ml of distilled water Skim milk powder 5 g in 50 ml of distilled water.

Fatty acid composition of several species of the genus *Bacillus* rRNA group 1 of Ash *et al.* 1991^a

	Saturated acids									Sa	turated	iso-braı	nched ad	ids		Sat	urated <i>ar</i>	<i>nteiso-</i> br	anched a	cids		Unsa	nturated	acids				
Species	10:0	12:0	13:0	14:0	15:0	16:0	17:0	18:0	<i>i</i> 12:0	<i>i</i> 13:0	<i>i</i> 14:0	<i>i</i> 15:0	<i>i</i> 16:0	<i>i</i> 17:0	<i>i</i> 18:0	a13:0	a14:0	a15:0	<i>a</i> 16:0	a17:0	<i>i</i> 16:1	a16:1	<i>i</i> 17:1	a17:1	<i>i</i> 18:1	Other acids	Reference	
Group 1 ^b B. cereus B. cereus B. thuringiensis			1	3 3 3	Tr 5	3 2 4				10 8 8	2 2 4	55 49 32	3 3 5	6 1		1		3 4 5		3 1 1	7 4 14		9 3 10	Tr 3		8 9	Kämpfer (1 994) Shida <i>et a</i> l. (1997a) Kämpfer (1994)	
roup 2 <i>B. amyl oliquefaciens</i> <i>B. amyl oliquefaciens</i> (mean of 3 strains)				Tr	Tr	3 3				Tr	1 1	34 25	3 4	10 14				36 38		7 12	1 1		2	2		3	Kämpfer (1994) Roberts <i>et al.</i> (1996	
<i>B. atrophaeus</i> (mean of 5 strains)						5					1	31	4	9				36		7	3		2				Roberts et al. (1996	
B. firmus B. flexus B. fumari oli				1 2	1	1 3					3 4	32 30 51	1 Tr 6	2 2 15				45 47 6	4	2 4 14	5 2		1 2 2	3 Tr		3 4	Kämpfer (1 994) Kämpfer (1 994) Logan <i>et a</i> l. (2000)	
(mean of 20 strains) B. jeotgali B. lentus B. licheniformis B. licheniformis				1 2 Tr		3 4 2 4					2 7 1 1	49 30 34 29	2 3 3 4	4 11 7				9 44 27 38		4 5 9 11	5 5 1 5		7	3		11 9	Yoon <i>et a</i> l. (2001c) Kämpfer (1994) Kämpfer (1994) Roberts <i>et al.</i> (1996	
(mean of 5 strains) <i>B. megaterium</i> <i>B. megaterium</i> <i>B. mojavensis</i> (mean of 22 strains)				2 2	2	2 2 2				Tr	6 8 1	28 33 22	Tr 1 3	1 Tr 9				49 45 43		3 1 13	4 3		1	1 3		3 6	Kämpfer (1994) Shida <i>et a</i> l. (1997a Roberts <i>et al</i> . (199	
B. oleronius				1		2						47	3	5				25		16							Kunigk <i>et al.</i> (1995	
<i>B. pumilus B. sonorensis</i> (mean of 8 strains)				1		1 5				Tr	1 Tr	43 30	3	9				37 37		5 12	2 1		Tr	3		7	Kämpfer (1994) Palmisano <i>et al.</i> (
B. subtilis B. subtilis B. subtilis (mean of 5 strains)				Tr Tr	Tr 2	1 1 3			Tr		1 1	27 28 29	1 2 2	8 6 10				39 45 40		10 7 9	1 2		3 Tr 2	1		8 9	Kämpfer (1994) Shida <i>e</i> t al. (1997 Roberts <i>et al.</i> (199	
<i>B. vallismortis</i> (mean of 5 strains)						3					1	25	4	14				37		12	1		2				Roberts et al. (19	
Other species B. badius B. badius B. badius B. acrculans B. circulans B. coagulans B. coagulans				2 2 3 4 2 1	3 10 2 1 2 5	3 2 3 4 2 1					4 2 4 4 1	41 60 56 14 10 10 2	1 3 5 3 4 Tr	2 3 Tr				10 8 47 57 63 66		4 2 7 3 17 23	5 4 6 3	16	7 6 1	4 2		9 7 14 13 2	Kämpfer (1994) Shida <i>et al.</i> (1997) Heyndrickx <i>et al.</i> (Kämpfer (1994) Shida <i>et al.</i> (1997) Kämpfer (1994) Shida <i>et al.</i> (1997)	
B. simplex B. smithii				1	1	4 8					3	10 19	6	1 13				69 12		3 42	6		1			2	Kämpfer (1994) Andersson <i>et a</i> l.	

^a Data are given for the type strains unless stated otherwise. The data for some unsaturated and branched fatty acids were combined in this table. Data are given as percentage of total cellular fatty acids. Tr, traces (<1%). Because some of the values were summed off, the total sum of fatty acids is not in all cases 100%. More details about the heterogeneity of fatty acids within some species can be found in the study of Kämpfer (1994). Bacillus cohnii, grouped into rRNA group 1 (Nielsen *et al.* 1994), showed 46–54% *i*15:0 and *a*15:0, and a proportion of unsaturated fatty acids from 22 to 27% (Spanka & Fritze 1993).

^b For *B. anthracis*, fatty acid profiles were given by Lawrence *et al.* (1991). When grown on RCM-medium (a complex medium), *B. anthracis* produced (similar to *B. cereus*) high amounts of 16:0 (>50%) and only 7% of *i*15:0. A cultivation on a synthetic medium (RM-medium) increased the amount of *i*15:0 to 16%. Details are given by Lawrence *et al.* (1991).

Berkeley et al.,2002

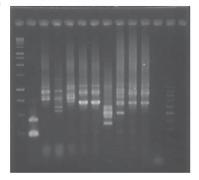
Primers used for amplification and sequencing of the 16S rRNA gene of *Bacillus anthracis*, *B. thuringiensis*, and *B. cereus*

<u></u>	
8F	5'AGT TGA TCC TGG CTC AG 3'
1492R	5'ACC TTG TTA CGA CTT3'
Primers for amplification of the 16S rRNA gene	
67F	5'TGA AAA CTG AAC GAA ACA AAC 3'
1671R	5'CTC TCA AAA CTG AAC AAA ACG AAA 3'
Inner primers used for nested PCR on clinical sa	mples
23F	5'ACA AAC AAC GTG AAA CGT CAA 3'
136R	5'AAA CGA AAC ACG GAA ACT T 3'
Primers used for sequencing of the 16S rRNA ge	ne
104F	5'GGA CGG GTG AGT AAC ACG TG 3'
104R	5'CAC GTG TTA CTC ACC CGT CC 3'
1230F	5'TAC ACA CGT GCT ACA ATG 3'
1390F	5'GGG CCT TGT ACA CAC CG 3'
1390R	5'CGG TGT GTA CAA GGC CC 3'
8F	5'AGT TGA TCC TGG CTC AG 3'
357F	5'TAC GGG AGG CAG CAG 3'
357R	5'CTG CTG CCT CCC GTA 3'
530F	5'CAG CAG CCG CGG TAA TAC 3'
530R	5'GTA TTA CCG CGG CTG CTG 3'
790F	5'ATT AGA TAC CCT GGT AG 3'
790R	5'CTA CCA GGG TAT CTA AT 3'
981F	5'CCC GCA ACG AGC GCA ACC C 3'
981R	5'GGG TTG CGC TCG TTG CGG G 3'

ISR-PCR from *Bacillus* **spp. strains PCR Amplification**

- *1. Taq* polymerase and 10X STR buffer (Promega).
- 2. Thermal cycler (PE 9700, Applied Biosystems, CA).
- 3. 100 mM Stock solution of primers:
- ISR-1494 (5'-GTCGTAACAAGG TAGCCGTA-3') and
- ISR-35 (5'-CAAGGCATCCACCGT-3').

Intergenic spacer region-PCR (ISR-PCR).


Spencer and Spencer,2004

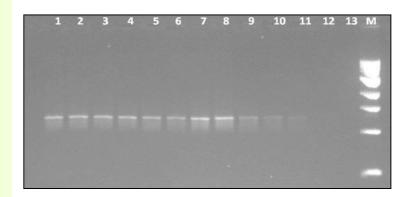
ISR-PCR from *Bacillus* **spp. strains DNA isolation**

- 1. Lysis buffer TEC-SDS: 10 mM Tris-HCl, pH 8.0; 10 mM EDTA; 100 mM NaCl, and 2% (w/v) SDS.
- 2. 20 mg/mL Proteinase K in distilled water.
- 3. 3 M Sodium acetate, pH 5.2.
- 4. TE-buffer-saturated phenol.
- 5. Chloroform: isoamyl alcohol, 24:1 (v/v).
- 6. Isopropanol and 70% ethanol
- 7. RNAase A solution (10 mg/mL stock) in distilled water.

ISR-PCR from *Bacillus* **spp. strains** Agarose gel electrophoresis

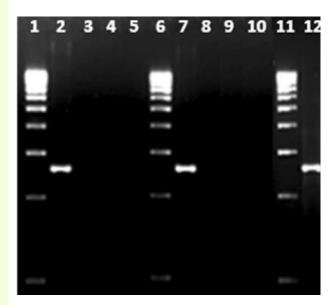
- Lanes:
- M1, 1 kb DNA Ladder;
- 1, *B. subtilis* 1 A1;
- 2, B. halodurans

M1 1 2 3 4 5 6 7 8 9 10 11 M2


- From lanes 3 to 10, *Bacillus* sp. alkaliphilic strains: 3, MIR32; 4, MRL1; 5, MRL2; 6, MRL22; 7, MRL33; 8, MRL4; 9, MRL5; 10, MRL5;
- 11, control reaction without DNA template;
- M2, 100 bp DNA Ladder.
- Band between 200 and 600 bp are obtained for members of subtilis and cereus groups and patterns including long ISR spacers, generally between 600 and 1200 bp are typical or most alkaliphilic Bacillus spp.

Bacillus spp. Endoglucanase gene sequences Specific primers for identification of *B. subtilis*

- Primers ENIF and EN1R from endoglucanase gene were used to amplify a 1311 bp DNA fragment.
- The specificity of the primers was tested with seven reference strains and 28 locally isolated strains of endoglucanase positive *Bacillus* species.
- Two sets of primers:
- EN1F (103–124 bp) 5'-CCAGTAGCCAAGAATGGCCAGC-3',
- EN1R (1,413–1,393 bp) 5'-GGAATAATCGCCGCTTTGTGC-3') were designed by analyzing the conserved regions of the aligned sequences.

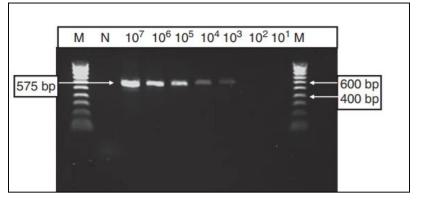

Bacillus spp. Endoglucanase gene sequences Specific primers for identification of *B. subtilis*

- Limit of detection of endoglucanase gene in different concentration of DNA.
- Lane 1 100 ng, lane 2 50 ng,
- lane 3 10 ng, lane 4 5 ng,
- lane 5 1 ng, lane 6 100 pg,
- lane 7 50 pg, lane 8 10 pg,
- lane 9 5 pg, lane 10 1 pg,
- lane 11 500 fg, lane 12 100 fg,
- lane 13 negative control,
- lane M size marker (1 kb ladder, NEB).

Bacillus spp. Endoglucanase gene sequences

- PCR amplification for endoglucanase gene in different *Bacillus* spp.
- Lane 1 size marker (500 bp ladder);
- lanes 2-5 *B. subtilis* ATCC-6,051, *B. cereus*-ATCC 13,061, *B. pumilus* ATCC-14,884, *B. megaterium* ATCC-9,885;
- lane 6 size marker (500 bp ladder);
- lanes 7-10 *B. subtilis* ATCC-11,774, *B. thuringiensis* ATCC-10,792, *B. licheniformis* ATCC-13,061, *B. amyloliquefaciens* CF8;
- lane 11 size marker (500 bp ladder);
- Iane 12 *B. subtilis* C11B1.

Bacillus subtilis group Bacillus pumilus Common PCR

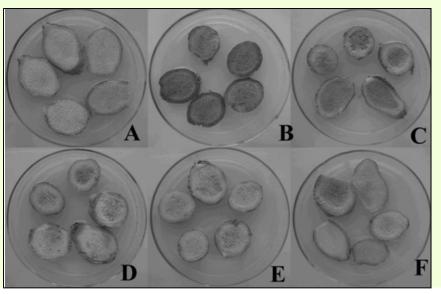

- PCR amplification of 16S rDNA from genomic DNA of tested strains.
- A DNA fragment of 16S rDNA was amplified by PCR from 19 tested strain genomic DNA extracted using the method described by Gao et al. (12).
- The PCR amplification was performed by using primer pairs 27f/1492r (27f: 5'-AGAGTTTGATCCTGGCTCAG-3', 1492r: 5'-GGTTACCTTGTTACGACTT3') (8) and the following procedure: denaturation at 94°C for 5 min; followed by 35 cycles of denaturation at 94°C for 30 s, annealing at 54°C for 90 s, and extension at 72°C for 90 s; and a final extension at 72°C for 7 min.
- The PCR product was purified from 1.2% agarose with a a Gel Extraction kit (OMEGA).

Bacillus subtilis group Bacillus pumilus Nested PCR

- The PCR amplification was performed by using specific primers OLI-1 (5'-GGGGGTAGCTTGCTACCTGCC-3') and OLI-2 (5'-CGTCATCCACTCCAGGT-ATTAACCGAA-3') and the following procedure: denaturation at 94°C for 2 min; followed by 35 cycles of denaturation at 94°C for 20 s, annealing at 68°C for 20 s, and extension at 72°C for 20 s; and a final period of 10 min at 72°C.
- The second-stage PCR was performed by using nested primer pairs JE2 (5'-GTGGGGGATAACTAGTCGAAAGAC-3')/Y2 (5'-CCCACTGCTGCCTCCCGTAGGAGT-3') and template from the first reaction product.
- In the second stage, 30 cycles of denaturation at 94°C for 20 s, annealing at 55°C for 20 s, and extension at 72°C for 20 s and a final period of 10 min at 72°C were used.
- The second PCR product was detected on 2% agarose gel with ethidium bromide (0.5 mg/ml).
- A specific PCR product of 172 bp was predicted.

Bacillus cereus group *motB* gene (encoding flagellar motor protein)

- A PCR technique was developed as a reliable and rapid identification method for the *Bacillus cereus* group species, based on a unique conserved sequence of the *motB* gene (encoding flagellar motor protein) from
- Bacillus cereus,
- Bacillus thuringiensis, and
- Bacillus anthracis.



Sensitivity of PCR detection of *Bacillus cereus* DSM 4312 with primers BCFomp1/ BCRomp1. Numbers above lanes indicate the level of inoculation as confirmed by conventional plate count enumeration. N, negative control; M, molecular marker.

Pathogeniciy test

Bacillus pumilus, ginger rhizome rot pathogen in China

- Symptoms caused by *Bacillus pumilus* strain GR8 on rhizome slices. A, Healthy rhizome slices that were inoculated with sterile distilled water and incubated in petri dishes for 2 days at 30°C.
- B and C, Severely rotten rhizome slices (symptoms: brown discoloration and water soaking) that were inoculated with a suspension of strain GR8 at 10⁹ and 10⁸ CFU/ml, respectively.
- D-F, Mild rotten rhizome slices (symptoms: brown discoloration) that were inoculated with a suspension of strain GR8 at 10⁷, 10⁶, and 10⁵ CFU/ml, respectively.

The genus Paenibacillus

- The name *Paenibacillus* is derived from the Latin adverb *paene*, meaning almost; almost a *Bacillus*.
- Isolated from a wide range of sources, the genus *Paenibacillus* comprises bacterial species relevant to humans, animals, plants, and the environment.
- Many *Paenibacillus* species can promote crop growth directly via:
- 1. biological nitrogen fixation,
- 2. phosphate solubilization,
- production of the phytohormone indole-3-acetic acid (IAA), and
- 4. release of siderophores that enable iron acquisition. Grady *et al.*,2016

The genus *Paenibacillus*

- Species of *Paenibacillus* were originally included in the genus *Bacillus*, which historically was defined based on morphological characteristics in common with the type species *Bacillus subtilis*, isolated in 1872.
- When 16S rRNA gene sequences were determined for standard strains of 51 species then defined as *Bacillus*.
- Phylogenetic analyses showed that these sequences segregated into at least five distinct clusters, one of which was reassigned to the novel genus *Paenibacillus* in 1993 and includes the type species *Paenibacillus polymyxa*.

Minor plant bacterial pathogens *Paenibacillus* spp.

- Bacillus spp. (including Paenibacillus, a new described genus which include species once assigned to the genus Bacillus) are one of most frequently encountering bacteria from soil that decompose organic materials.
- Some of them cause minor plant diseases: Rot of tubers, seeds, and seedlings and white stripe of wheat.
- They are also known as biocontrol agents for diseases and insect pests.
- Paenibacillus polymyxa causes a brown root rot on the storage roots e.g. ginseng root.
- Paenibacillus polymyxa was also isolated from calla lily tubers showing soft rot in commercial plantations in Poland.

Minor plant bacterial pathogens *Paenibacillus* spp. Plant associated *Paenibacillus* species

- In 1993 Ash *et al.*, proposed that members of "group 3" within the genus *Bacillus* should be transferred to the genus *Paenibacillus*, for which they proposed *Paenibacillus polymyxa* as the type species.
- Two of plant associated *Paenibacillus* species are:
- 1. Paenibacillus graminis isolated from plant roots, soil and food.
- 2. *Paenibacillus odorifer* isolated from plant roots, soil and food.

Some *Paenibacillus* species are known to infect various organisms, including honeybees and the parasite vector *Biomphalaria glabrata*, and occasionally present as opportunistic infections in humans(Grady *et al.*,2016).

Comparison of biochemical characteristics of *Paenibacillus* **strains** *Paenibacillus* **spp**.

 Supplementary Table S4. Comparison of phenotypic characteristics of *Paenibacillus* species among different reports

	Paenibacillus sp. CAR114	Paenibacillus sp. CAS34	P. riograndensis SBR5 ^T			P. so	nchi X1	9-5"	P. jilunlii DSM 23019 [™]			P. graminis DSM 15220 [™]							P. polymyxa ATCC 842 [™]					
	1*	1*	1	2*	3	1	3	4*	1	3*	6	1	3	5*	<u>8#</u>	10	11	1	7	8	9	11	12	
Acid production from:																								
D-Glucose	+	+	+	+	+	+	-	-	+	+	+	+	+	+	+	ND	+	+	+	+	+	+	ND	
D-Sorbitol	+	+	+	ND	+	+	-	ND	+	-	V	+	-	-	-	-	-	+	+	+	+	+	-	
D-Xylose	+	+	+	+	+	+	-	-	+	+	+	+	+	+	-	+	ND	+	+	-	-	ND	ND	
Glycerol	+	+	+	+	+	+	-	ND	+	+	+	+	+	+	-	+	-	+	+	+	+	+	+	
Lactose	+	+	+	+	+	+	-	-	+	+	+	+	+	+	ND	+	ND	+	+	+	+	+	ND	
Maltose	+	+	+	+	+	+	-	-	+	+	+	+	+	+	+	ND	+	+	+	+	+	+	ND	
Mannitol	+	+	+	+	ND	+	ND	ND	+	+	+	+	ND	+	ND	+	ND	+	+	ND	ND	ND	ND	
Sucrose	+	+	+	+	+	+	-	-	+	+	+	+	-	+	-	ND	-	+	+	+	+	+	+	
Catalase activity	+	+	+	ND	ND	+	ND	-	+	-	+	+	ND	+	+	ND	ND	+	ND	+	ND	ND	ND	
Growth at 3% NaCl	V	V	v	ND	+	V	+	+	V	+	+	v	+	ND	ND	ND	ND	+	ND	+	ND	ND	+	
Growth at 5% NaCl	-	-	-	-	ND	-	ND	-	-	-	-	-	ND	ND	ND	ND	ND	-	ND	-	ND	ND	ND	
Hydrolysis of casein	+	+	+	-	-	+	+	+	+	-	V	+	-	ND	-	-	-	+	+	-	-	-	+	
Hydrolysis of starch	-	+	+	+	÷	-	-	+	-	+	+	+	-	+	-	+	ND	+	+	-	-	ND	+	
Nitrate reduction	+	+	+	-	-	+	-	-	v	+	+	+	+	+	+	+	ND	+	+	+	+	ND	+	
Voges-Proskauer test	-	-	-	-	+	-	+	+	-	-	-	-	-	ND	-	ND	-	-	+	+	+	+	+	
Biochemical data obtained	d from this study ar	nd from literature	Asteri	sks indi	cate the	origina	i report	. Under	ined nu	mbers	refer to	data re	aprodu	ced fro	m oth	er stud	ies, as	detai	ed bek	ow. Ha	sh syr	nbol in	dicate	

Sant'Anna et al.,2017

The genus *Paenibacillus* Fatty acid composition of species of the genus *Paenibacillus*^a

			:	Saturat	ed acids	5				Sa	aturated	<i>iso-</i> bran	ched ac	ids		Sat	urated ar	<i>teiso-</i> br	anched a	cids		Unsa	aturated	acids		
Species	10:0	12:0	13:0	14:0	15:0	16:0	17:0	18:0	<i>i</i> 12:0	<i>i</i> 13:0	<i>i</i> 14:0	<i>i</i> 15:0	<i>i</i> 16:0	<i>i</i> 17:0	<i>i</i> 18:0	a13:0	<i>a</i> 14:0	a15:0	<i>a</i> 16:0	<i>a</i> 17:0	<i>i</i> 16:1	<i>a</i> 16:1	<i>i</i> 17:1	a17:1	<i>i</i> 18:1	Reference
P. alginolyticus				Tr	1	3					1	5	10	2				70		6						Shi da <i>et al.</i> (1997 a)
P. alvei				2	1	9					1	11	6	5				58		8	4					Shida <i>et al.</i> (1997 a)
P. alvei				2	1	8					Tr	11	5	4				57		7	3					Nakamura (1996)
(mean of 6 strains)																										
P. amylolyticus				3	Tr	13					2	2	9	3				46		2	Tr					Shida <i>et al.</i> (1997 b)
P. apiarius				1	2	5					Tr	8	4	5				60		16	1		Tr			Shi da <i>et al.</i> (1997 a)
P. apiarius				1	1	4					Tr	14	5	6				52		10	3		2			Nakamura (1996)
(mean of 6 strains)																										
P. azored ucens				3	Tr	22					Tr	6	9	6				34		20						Meehan <i>et al.</i> (2001)
P. azotofixans				2	Tr	18					1	2	7	1				62		5	Tr					Shi da <i>et al.</i> (1997 a)
P. borealis				18	Tr	10				Tr	5	11	10	5		Tr		35		2	1		Tr			Elo et al. (2001)
P. chondroitinus				1	2	6					2	2	10	1				70		3						Shi da et al. (1997 a)
P. chibensis				Tr	1	5					1	4	12	3				58		14						Shida et al. (1997b)
P. curdlanolyticus				1	1	7					2	2	24	1				56		3						Shida et al. (1997 a)
P. dendritiformis				1	3	6						6	5	8				43		21	3		1			Tcherpakovetal. (19
P. glucanolyticus				1	1	11					1	3	14	2				56		8	Tr		Tr			Shi da <i>et al.</i> (1997 a)
P. illinoisensis				2	1	24					2	1	6	1				57		5						Shida et al. (1997 b)
P. kobensis				1	3	12						2	9	Tr				65		3						Shi da et al. (1997 a)
P. koreensis						28							21					51								Chung et al. (2000)
P. larvae				3	2	28					1	11	3	7				28		9						Nakamura (1996)
(mean of 6 strains)																										
P. larvae ssp.				1	1	6						10	5	5				49		21	1					Shi da <i>et al.</i> (1997 a)
pulvifaciens																										
P. la utus				1	Tr	20					Tr	3	4	6				37		11	Tr		1			Shi da <i>et al.</i> (1997b)
P. lautus				2		7					2	6	9					58		9	4					Kämpfer (1994)
P. lautus				1	Tr	16					1	1	7	1				57		10	2		Tr			Shida et al. (1997 a)
P. macerans				4	Tr	18					8	3	16	1				36		12	Tr					Shi da <i>et al.</i> (1997 a)
P. macquariensis				1	1	3					1	5	3	Tr				81		1	1		Tr			Shi da <i>et al.</i> (1997 a)
B. pabuli				2	1	5					5	5	9					60		3	2					Kämpfer (1994)
P. pabuli				1	Tr	10					1	2	5	1				74		4	_					Shi da <i>et al.</i> (1997 a)
P. peoriae				1	Tr	11					1	8	7	5				55		10	Tr		Tr			Shi da <i>et al.</i> (1997 a)
P. polymyxa				Tr	Tr	9					Tr	1	6	2				63		17						Shida <i>et al.</i> (1997 a)
P. thiaminolyticus				2	Tr	12					Tr	6	3	4				47		16	5		1			Nakamura (1996)
(mean of 6 strains)				-								Ŭ									<u> </u>					
P. thiaminolyticus				1	Tr	11						11	6	6				45		16	5		2			Shida <i>et al.</i> (1997 a)
P. validus					1	11						4	12	3				57		7	Tr		Tr			Shi da <i>et al.</i> (1997 a)

^a Data are given for the type strains unless stated otherwise. The data for some unsaturated and branched fatty acids were combined in this table. Data are given as percentage of total cellular fatty acids. Tr, traces (<1%). Because some of the values were summed off, the total sum of fatty acids is not in all cases 100%. For *P. campinasensis* (Yoon *et al.* 1998), 53% *a*15:0 were reported as the predominant fatty acid.

Identification of the bacterial pathogens Fastidious bacteria

Fastidious and non-culturable xylem- or phloem-limited bacteria

Fastidious bacteria

- Most phytopathogenic bacteria invade their host plants through natural openings or wounds, colonizing intercellular spaces, expressing virulence factors and inducing various host plant responses.
- A few, however, are introduced directly into the sugar-rich phloem sieve tubes or into the watertransporting xylem elements by vascular-feeding insects.
- Their location within living (sieve tubes) or degenerated (xylem elements) plant cells, rather than in intercellular spaces, offers different challenges and opportunities for them to avoid the host plant's defense system.

Fastidious bacteria

- These vascular-colonizing bacteria can be divided into three groups:
- 1. Wall-less mollicutes (phytoplasmas and spiroplasmas).
- Walled phloem-inhabiting bacteria(BLOs), and
- 3. Walled xylem-limited bacteria(*Xylella*).

Identification of the bacterial pathogens *Xylella*

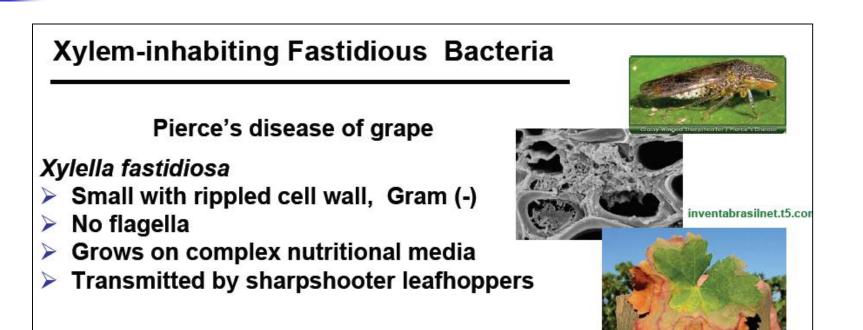
Xylem-limited prokaryotes Disease diagnosis and pathogen diagnostics

Xylella, a small piece of wood, a small log

Domain: Bacteria Phylum: Proteobacteria

Class: Gammaproteobacteria Order: Pseudomonadales Family: Pseudomonadaceae Genus: *Pseudomonas* Order: Xanthomonadales Family: Xanthomonadaceae Genera: *Xanthomonas* and *Xylella*

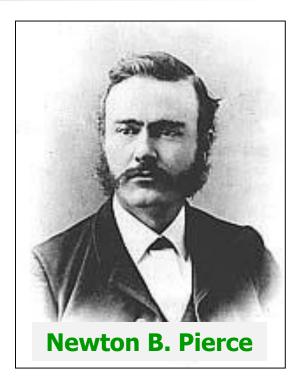
Deep phylo-taxono genomics reveals *Xylella* as a variant lineage of plant associated *Xanthomonas* and supports their taxonomic reunification along with *Stenotrophomonas* and *Pseudoxanthomonas* (Bansal *et al.*,2021)


Euzéby,2018;CABI,2018

Xylella fastidiosa nomenclature

- Xylella Wells et al. 1987, gen. nov.
- Type species: Xylella fastidiosa Wells, Raju, Hung, Weisburg, Mandelco-Paul and Brenner, 1987, 141.
- Xylella fastidiosa gen. nov., sp. nov.: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp.

The causal agent of PD was isolated from grape in pure culture for the first time in 1978 (Davis *et al.*,1978). However, this xyleminhabiting, vector-transmitted, Gram-negative, very slow growing bacterium, was only properly described, classified and named *Xylella fastidiosa* in 1987 (Wells *et al.*,1987).


The genera *Xanthomonas* and *Xylella* belong to the same family and are made up of several species

Culturable...but slow.

Pierce's disease

 In 1892, Newton B.
 Pierce, a bacteriologist and state plant pathologist of California, examined grapevines (*Vitis vinifera*) with a scorch and decline of unknown cause.

Newton B. Pierce, As the Special Agent of Department of Agriculture was Appointed in 1890.

Gould & Lashomb,2005

- Xylella fastidiosa has been found in more than 600 plant species belonging to 63 diverse plant families (Castro et al.,2021).
- It may colonizes or infects host plant species.
- X. fastidiosa has been proposed to be primarily an endophyte because an interaction does not always result in disease (Chatterjee *et al.*,2008).
- The bacterium colonizes a wide range of host plants, but reports where there is a pathogenic effect of *X. fastidiosa* on its host indicate a much smaller number of species, so Xf is typically considered a commensalist (Sicard *et al.*,2018).
- According to Castro *et al.*,2021, in the vast majority of its hosts, it is considered a benign commensal.

- There is no apparent specificity between a particular X. fastidiosa subspecies and insect vector species.
- In fact, individual glassy-winged sharpshooter (GWSS) (*Homalodisca vitripennis*) can acquire more than 1 X. fastidiosa subspecies in its foregut and can potentially transmit these strains to a variety of plants where the bacterium can behave as:
- 1. Pathogen, or
- 2. a commensal endophyte.
- However, alternative hosts are an important component of the epidemiology of Xf diseases.

- The bulk of the research on X. fastidiosa is biased toward isolates that are pathogenic in economically important hosts.
- The mechanism by which X. fastidiosa causes disease only in certain hosts, but not others, has not been fully elucidated, and its interactions with commensal hosts is largely understudied.
- However, it is speculated that compatibility between xylem pit membrane carbohydrate composition and X. fastidiosa-secreted cell wall-degrading enzymes mediate disease onset and progression (Ingel et al.,2019; Sun et al.,2011).

- In addition, the O antigen is a critical component in evading initial immune recognition in the susceptible grapevine immune system, and it is tempting to speculate that O antigen composition dictates the type of symbiotic association with the plant commensalism versus parasitism (Rapicavoli *et al.*,2018).
- Understanding the mechanisms that underlie how different Xylella-plant host interactions skew toward parasitism or commensalism is an area of research that is ripe for exploration.

Insect and plant hosts

Evolved with plants to exist as a xylem-limited endophyte

- It is a destructive disease which attacks a wide range of susceptible, commercially grown crops including:
- 1. economically important crops (citrus, stone fruits, grapevine and olive), in addition to
- 2. wild forest trees, shrubs and landscape plants.
- It is known to have a remarkably broad host range, with 359 plant species, from 204 genera and 75 different botanical families recorded.

Evolved with plants to exist as a xylem-limited endophyte Endophytic lifestyle

- Xylella fastidiosa is a gram-negative bacterium (family Xanthomonadaceae) that has evolved with plants to exist as a xylem-limited endophyte(Shubib and Hamdan,2017).
- The bacterium is a plant endophyte native to the Americas, which develops in up to 300 plant species including ornamental and agricultural plants (Godefroid *et al.*,2019).
- Xylella fastidiosa a devastating agricultural pathogen with an endophytic lifestyle(Burbank and Roper,2021).

Milestones in the study of *Xylella fastidiosa*

- Xf has been identified as the causative agent of Pierce's disease, which has been causing extensive damage to vineyards in California for almost 130 years.
- However, it was only at the end of the 1970s that this fastidious bacterium could be isolated on solid medium.

Pierce, N.B.; Newton, B. 1892. The California Vine Disease: A Preliminary Report of Investigations; G.P.O.: Washington, DC, USA.

Clavijo-Coppens *et al.*,2010

Milestones in the study of *Xylella fastidiosa*

First report of Pierce's disease and phony peach disease(Pierce and Newton, 1892)	1890s
Graft transmission of Pierce's disease and phony peach disease	1939
Leafhopper transmission of Pierce's disease and alfalfa dwarf	1946
Tetracycline suppression of Pierce's disease symptoms	1971
Association of rickettsia like bacteria with Pierce's disease and phony peach disease	1973
Isolation of bacterium from infected grapevine	1978
Pierce's disease bacterium associated with leaf scorch	1980
Description of the Xylella fastidiosa species	1987

Pierce, N.B.; Newton, B. 1892. The California Vine Disease: A Preliminary Report of Investigations; G.P.O.: Washington, DC, USA.

Lashomb et al.,2001

Geographical distribution of *Xylella* spp. In Iran

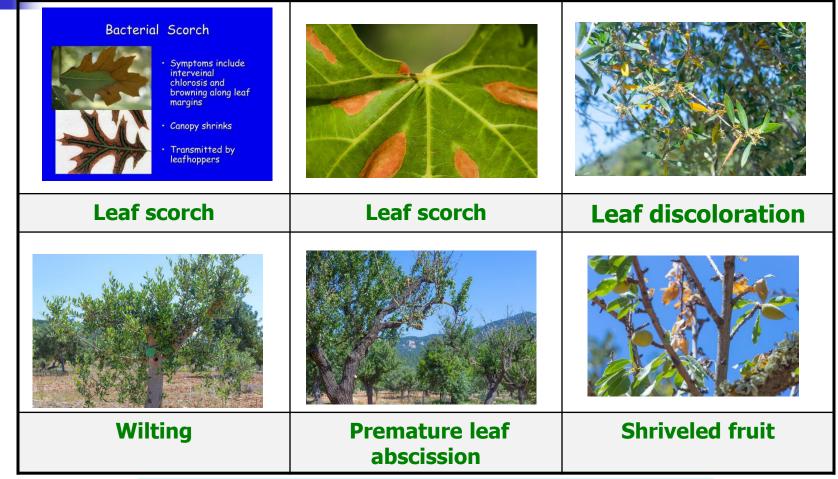
EPPO Global Database,2022

Geographical distribution of *Xylella* **spp. In Asia: Iran, Israel and Taiwan**

- Symptoms resembling those of Pierce's disease and almond leaf scorch were observed in vineyards and almond orchards in several provinces of Iran.
- Amanifar N, Taghavi M, Izadpanah K, Babaei G (2014). Isolation and pathogenicity of *Xylella fastidiosa* from grapevine and almond in Iran.
 Phytopathologia Mediterranea 53(1), 318-327.

Asia	India		Absent, unreliable record	view
Asia	India	Himachal Pradesh	Absent, unreliable record	view
Asia	Iran		Present, restricted distribution	view
Asia	Israel		Present, few occurrences	view
Asia	Lebanon		Absent, invalid record	view
Asia	Taiwan		Present, restricted distribution	view

EPPO Global Database,2022


Bacterial Leaf Scorch (BLS) BLS symptoms vs. Abiotic scorch

- BLS Symptoms:
- Irregular, 'tri-color' scorch.
- Older leaves more severely affected.
- Abiotic scorch:
- Uniformly affects new and older leaves.

Symptoms caused by fastidious vascular bacteria *Xylella fastidosa*

- Nine *Xylella fastidiosa* symptoms you should know about!
- 1. Scorching(Leaf scorching, otherwise known as leaf burn or sun scorch, is the browning of the plant tissue);
- 2. Discoloration;
- 3. Stunting;
- 4. Wilting;
- 5. Premature leaf abscission;
- 6. Shriveled fruit;
- 7. Premature fruit abscission;
- 8. Dieback;
- 9. Plant death.

Gould & Lashomb, 2005; SlideServe, 2020; BIOVEXO, 2020

Sweet gum	Shingle oak	White mulberry
	<image/> <section-header></section-header>	Red maple

Gould & Lashomb,2005

	<image/>	Sweet orange(CVC)
Coffee		Oleander

EPPO,2016

Xyelle kestelese (xyele A - hette E///ed webore)			
Lavender	Polygala	Medicago	
		Healthy Diseased	
Pear	Apricot (in mixed infection with phytoplasma)	Plane tree (<i>Platanus</i> species)	

94

Bacterial Leaf Scorch (BLS) Plane(*Platanus* species) *Xylella fastidiosa*

- Leaf scorch, usually occurring at leaf margins first; tissues die, leaves curl inwards. Often no yellow boundary between diseased/healthy tissue as in other hosts.
- 2. Main veins remain green with remainder of leaf dying and turning brown.
- 3. Diseased leaves in crown appear scorched, brown and curl inwards.
- 4. Discoloration/death of foliage and dieback of twigs/branches in crown. These symptoms typically develop at base of crown before moving upwards and outwards as disease progresses.

What to look out for

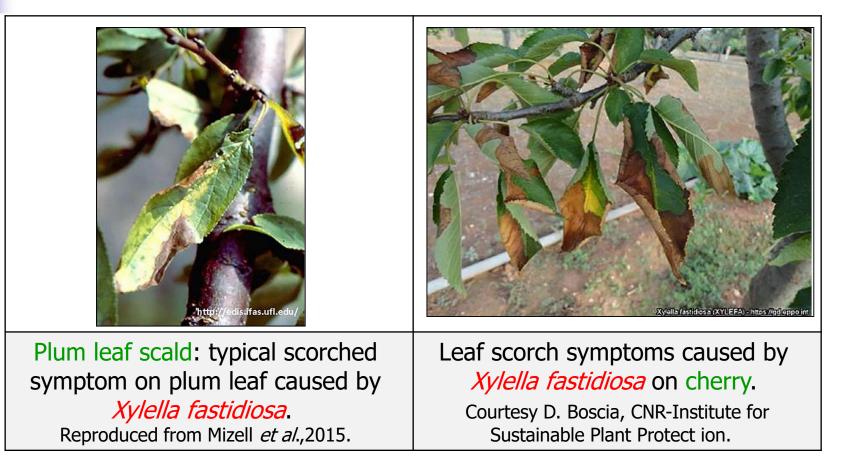
- Leaf scorch, usually occurring at leaf margins first; tissues die, leaves curl inwards. Often no yellow boundary between diseased / healthy tissue as in other hosts
- Main veins remain green with remainder of leaf dying and turning brown 2
- Diseased leaves in crown appear scorched, brown and curl inwards 3
- Discoloration / death of foliage and dieback of twigs / branches in crown. These symptoms typically develop at base of crown before moving upwards and outwards as disease progresses 4

Where is the

Bacterial Leaf Scorch (BLS) Almond *Xylella fastidiosa* subsp. *multiplex*

• Which area was first infected? How long? What genera of plants affected? How wide spread is *Xylella* in Spain? Investigations ongoing.

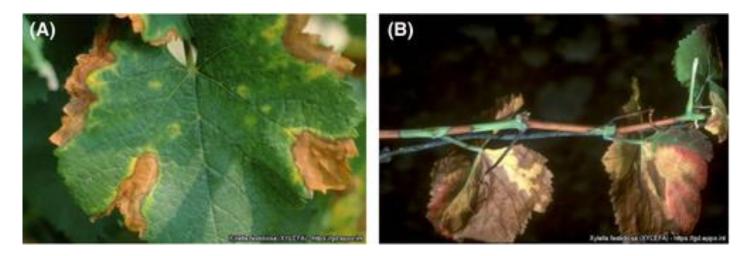
AHDB Ornamentals Conference Stoneleigh 20th February,2018


Citrus variegated chlorosis(CVC) A serious disease of citrus caused by the bacterium *Xylella fastidiosa* subsp. *pauca*

- The growth rate of affected trees is greatly reduced, and twigs and branches may wilt.
- Trees in nurseries can show symptoms of variegated chlorosis as do trees aged over 10 years.
- Young trees (1-3 years) become systemically colonized by *X. fastidiosa* faster than older trees.
- Trees more than 8-10 years old are usually not totally affected, but rather have symptoms on the extremities of branches.

Small raised lesions appear on the underside of the citrus leaves.

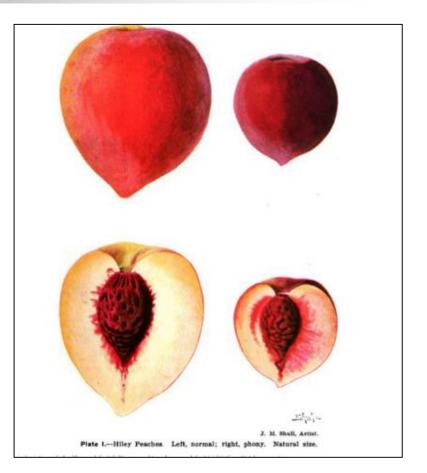
Bacterial Leaf Scorch/Scald Xylella fastidosa



Oleander leaf scorch *Xylella fastidiosa*

Pierce's disease Grapevine twig and fruits *Xylella fastidiosa*

- Symptoms of *Xylella fastidiosa* on grapevine showing
- A. marginal necrosis surrounded by a chlorotic halo on the leaf and,
- B. irregular ripening of bark.


EPPO Global Database

Pierce's disease Grapevine twig and fruits *Xylella fastidiosa*

Phony peach disease(PPD) *Xylella fastidiosa* subsp. *multiplex* (Xfm)

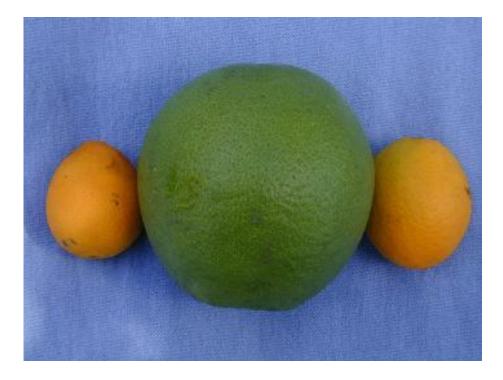
Historical paintings of a healthy peach fruit (left) compared to a phony peach fruit (right) (from Hutchins 1933).

Phony peach disease(PPD) *Xylella fastidiosa* subsp. *multiplex* (Xfm)

Symptoms of Phony peach disease on Prunus persica (peach), reduced growth of the tree on the left. Janse and Obradovic, 2010	Tree with phony peach disease (foreground) showing advanced petal fall (bloom) and leaf development as compared to healthy trees in the background (still in full bloom and with limited leaf expansion) Johnson <i>et al.</i> ,2021

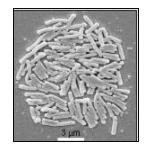
Phony peach disease(PPD) Xylella fastidiosa subsp. multiplex (Xfm)

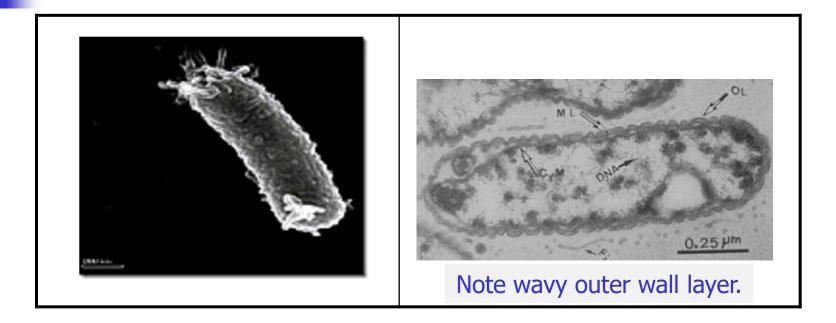
- Peach fruit ripeness (color) comparisons on June 23, 2020.
- Fruit on a tree with phony peach disease are less mature and ripe as compared to
- B. fruit on a healthy peach tree.


Typical symptoms Preliminary diagnosis of BLS *Xylella fastidiosa*

- Preliminary diagnosis of bacterial Leaf Scorch, BLS is made by interpreting the symptoms described above in late-summer and early fall.
- Especially useful diagnostic criteria include:
- 1. leaf scorch,
- 2. premature leaf drop,
- 3. the random distribution of affected branches around the canopy,
- 4. thinning of the crown, and the random appearance of the disease within populations of trees.

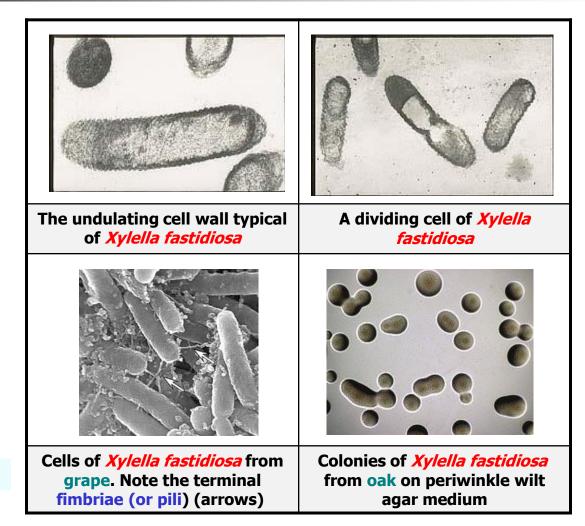
Gould &Lashomb,2005



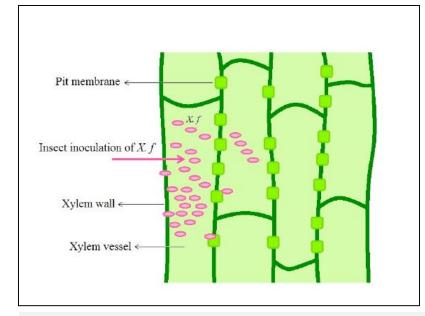

Healthy fruit between diseased citrus fruits *Xylella fastidiosa*

Francisco F. Laranjeira

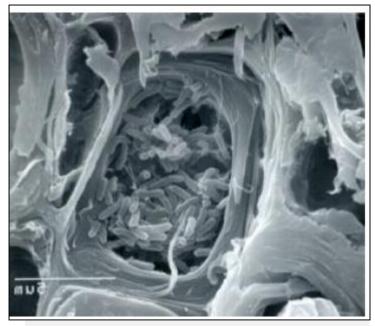
Cell morphology *Xylella fastidiosa*



Under dark field microscopy, the bacterium has a rod-shaped appearance with the following dimensions: 0.2-0.35 µm by 1-4 µm. Under the electron microscope, *X. fastidiosa* shows a characteristic rippled wall.


Scanning electron micrograph photo by E. W. Kitajima, Brazil

Cell morphology The bacterial cells often possess a rippled (undulating) cell wall



Gould&Lashomb,2005

Disease development *Xylella fastidosa*

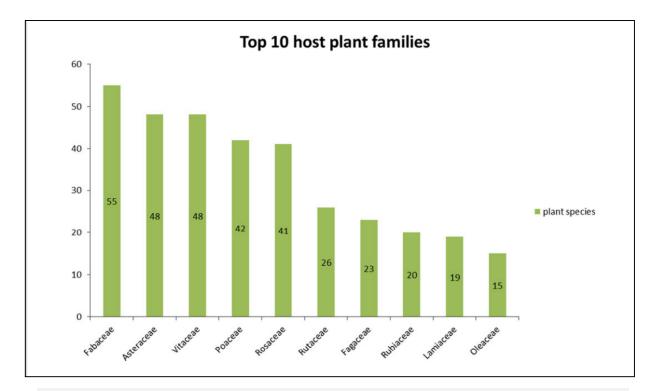
X. fastidiosa is xylem-limited and can only spread to the neighboring xylem vessel by disrupting the pit membrane (PM). Picture is adapted from (Chatterjee *et al.*, 2008).

Xylem cell occluded with bacterial cells. (Photograph courtesy of R. Jordan)

Disease development *Xylella fastidiosa*

- No disease is produced in many host plants;
- 2. Some individual strains are able to infect different hosts, but others do not (Sherald,1993).

Pathogen host range *Xylella fastidiosa*: A pathogen of landscape trees


 Xylella fastidiosa is a pathogen that causes leaf scorch and related diseases in over 150 plant species, including Pierce's disease in grapevines (PD), phony peach disease (PP), plum leaf scald (PLS), and leaf scorch in almond (ALS), oak (OAK), and oleander (OLS).

Alfalfa dwarf	Oleander leaf scorch
Almond leaf scorch	Phony peach disease
Citrus variegated chlorosis	Pear leaf scorch
Coffee leaf scorch	Periwinkle wilt
Elm leaf scorch	Pierce's disease of grapevine
Maple leaf scorch	Plum leaf scald
Mulberry leaf scorch	Sycamore leaf scorch
Oak leaf scorch	

Pathogen host range *Xylella* subsp. host plant families-the most abundant in species

- The total number of positive host plant species of X. fastidiosa subspecies (subsp. or ssp.) was counted.
- The total number of plants reported infected by X.
 fastidiosa regardless of the detection method was
 563 species, 264 genera and 82 families.
- 1. Artificial inoculations were positive in 122 plant species.
- 2. While 234 plant species were reported positive in natural infections.

Xylella subspecies host plant familiesthe most abundant in species Top 10 host plant families

The most studied genera belonged to economically important crops: Vitis, Citrus, Prunus and Olea.

EFSA (European Food Safety Authority), 2018

Pathogen host range A heterogeneous species/subspecies producing a variety of symptoms

- Genetic and phenotypic variation within the species has long been recognized and host-specific pathotypes have been identified.
- For example
- Strains shown to cause Pierce's disease of grape also cause almond leaf scorch and alfalfa dwarf.
- Similarly, the strain or strains responsible for phony peach disease are also responsible for plum leaf scald.
- Strains causing citrus variegated chlorosis (CVC) are closely related to strains responsible for coffee leaf scorch (CLS).
- Strain relationships become more complex when genetically distinct strains cause similar symptoms in the same host.

Pathogen host range Diseases associated with *Xylella fastidiosa*

- Alfalfa dwarf
- Almond leaf scorch (ALSD)
- Bacterial leaf scorch of landscape trees (BLS)
- Citrus variegated chlorosis
- Coffee leaf scorch
- Elm leaf scorch
- Maple leaf scorch
- Mulberry leaf scorch
- Oak leaf scorch

- Oleander leaf scorch
- Olive quick decline syndrome (OQDS)
- Pear leaf scorch
- Peach phony disease (PPD)
- Pecan leaf scorch
- Periwinkle wilt
- Plum leaf scald (PPD)
- Pierce's disease of grape (PD)
- Sycamore leaf scorch

Pathogen host range Tree hosts of *Xylella fastidiosa*

- *Albizia julibrissin* (Silk tree)
- Acer negundo (Boxelder)
- *A. rubrum* (Red maple)
- A. saccharinum (Silver maple)
- A. saccharum (Sugar maple)
- *Cercis occidentalis* (Western redbud)
- Chitalpa tashkinensis (Chitalpa)
- Cornus florida (Flowering dogwood)
- Celtis occidentalis (Hackberry)
- Fagus crenata (Japanese beech (bonsai)
- Ginkgo biloba (Maidenhair tree)
- Jacaranda mimosifolia (Jacaranda)
- Juglans (Walnut)

- Liquidambar stryaciflua (Sweetgum)
- Magnolia grandiflora (Southern magnolia)
- Morus alba (White mulberry)
- Olea europea (Olive)
- Phoenix reclinata (Senegal date palm)
- Platanus occidentalis (American sycamore)
- *P. mexicana* (Mexican sycamore, Mexican plane)
- P. oaxacana (Oaxaca plane)
- *P.* x *acerifolia* (London plane)
- Prunus cerasifera (Ornamental palm)
- Pyrus communis (Pear)

Note: The genus *Plantanus* are often known in English as planes or plane trees. Some North American species are called sycamores (especially *Platanus occidentalis*). Plane trees are a potential host.

Sherald, 2007; Wikipedia, 2019;...

Pathogen host range Tree hosts of *Xylella fastidiosa*

- *Quercus alba* (White oak)
- *Q. bicolor* (Swamp oak)
- *Q. coccinea* (Scarlet oak)
- *Q. falcata* (Southern red oak)
- *Q. imbricaria* (Shingle oak)
- *Q. incna* (Bluejack oak)
- *Q. laevis* (Turkey oak)
- *Q. laurifolia* (Laurel oak)
- *Q. macrocarpa* (Bur oak)
- *Q. nigra* (Water oak)
- *Q. paulustris* (Pin oak)
- *Q. phellos* (Willow oak)
- *Q. prinus* (Chestnut oak)
- *Q. rubra* (Northern red oak)

- *Q. shumardii* (Shumard oak)
- *Q. stellata* (Post oak)
- *Q. velutina* (Black oak)
- *Q. virginiana* (Live oak)
- Ulmus americana (American elm)
- *U. glabra* (Wych elm)
- *U. pumila* (Siberian elm)

Sherald,2007

Major diseases

Partial list of species in the *Xylella* genus by host plant

X. fastidiosa subsp. fastidiosa	X. fastidiosa subsp. multiplex	<i>X. fastidiosa</i> subsp. <i>pauca</i>	<i>X. fastidiosa</i> subsp. <i>sandyi</i>	<i>X. fastidiosa</i> subsp. <i>morus</i>	Xylella taiwanensis
Alfalfa	Almond	Almond	Coffee	Mulberry	Pear
Almond	Asparagus	Citrus	Daylily		
Coffee	Blueberry	Coffee	Magnolia		
Citrus	Crepe myrtle	Hibiscus	Oleander		
Grapevine	Elm	Oleander			
Lupin	Gingko	Olive			
Maple	Lavender	Peach			
Oleander	Maple	Wattle			
Rosemary	Oak	Westringia			
	Oleander				
	Olive				
	Peach				
	Pear				
	Plum				
	Sunflower				
	Wattle				
	Westringia				

Three subspecies of *sandyi*, *morus* and *tashke* are associated with diseases of less economic interest and with a limited host spectrum.

Australian Government Inspector-General of Biosecurity, 2021-22

The recognized *Xylella* spp. and subspecies

Xylella fastidiosa and Xylella taiwanensis

- Schaad *et al.*, 2004 proposed three subspecies based on:
- 1. Pathogenicity;
- 2. Phylogenetic characteristics;
- 3. DNA relatedness.
- Two main species:
- *1. Xylella fastidiosa* subsp. *fastidiosa* (inaccurately named as *X. f.* subsp. *piercel*)(Schaad *et al.*,2004),
- *I. X. fastidiosa* subsp. *multiplex* (Schaad *et al.*,2004),
- II. X. fastidiosa subsp. pauca (Schaad et al., 2004),
- *III. X. fastidiosa* subsp. *sandyi* (Randal *et al.*,2009),
- *IV. X. fastidiosa* subsp. *tashke* (Randal *et al.*,2009),
- *X. fastidiosa* subsp. *morus* (Nunney *et al.*,2014),
- 2. *Xylella taiwanensis* (Su *et al.*,2016).

Diseases caused naturally by *Xylella fastidiosa* is divided into six subspecies

- Initial research on the molecular genetic diversity of PD strains and other Xf pathotypes was published in 2001 (Hendson *et al.*,2001), reporting a division of Xf species at a subspecies or pathovar level.
- Currently six Xf subspecies determined by:
- 1. internal transcribed spacer (ITS) sequences, and
- multilocus sequencing through partial sequences of 11 housekeeping genes (Yuan *et al.*, 2010; Su *et al.*, 2013; Jolley *et al.*,2018).

Diseases caused naturally by *Xylella fastidiosa* is divided into six subspecies

Xylella taiwanensis	Pear leaf schorch diseae
X. fastidiosa subsp. tashke	strains from the ornamental tree chitalpa tree (<i>Chitalpa tashkentensis</i>)
<i>X. fastidiosa</i> subsp. <i>sandyi</i>	Oleander plants (Nerium oleander),
<i>X. fastidiosa</i> subsp. <i>pauca</i> (well-known because of citrus variegated chlorosis, CVC, and olive quick decline syndrome, OQDS)	Citrus(CVC), olive quick decline syndrome(OQDS), coffee, oleander, almond;
<i>X. fastidiosa</i> subsp. <i>multiplex</i> (primarily associated with forest trees or <i>Prunus</i> spp.)	Britain's native pedunculate oak (<i>Quercus</i> <i>robur</i>), wych elm <i>(Ulmus glabra</i>), northern red oak (<i>Q. rubra</i>), peach, plum, pigeon grape, almond, sycamore (plane),
<i>X. fastidiosa</i> subsp. <i>morus</i>	White mulberry(<i>Morus alba</i>), red mulberry(<i>Morus rubra</i>), mulberries(<i>Morus</i> sp.), heavenly bamboo/nandina(<i>Nandina</i> <i>domestica</i>)
<i>Xylella fastidiosa</i> subsp. <i>fastidiosa</i> (erroneously named <i>X. f.</i> subsp. <i>piercel</i>)	Grape vines, citrus, coffee, alfalfa, almond, and maple, <i>Nerium oleander</i> , rosemary,

Diseases caused artificially by *Xylella fastidiosa* subspecies

<i>Xylella fastidiosa</i> subsp. <i>fastidiosa</i>	Pear (<i>Pyrus communis</i>), oak (<i>Quercus petraea</i>), white willow(<i>Salix alba</i>)
<i>X. fastidiosa</i> subsp. <i>multiplex</i>	Pear (<i>Pyrus communis</i>), Apple (<i>Malus domestica</i>), oak (<i>Quercus petraea</i>), willow(<i>Salix alba</i>)
<i>X. fastidiosa</i> subsp. <i>pauca</i>	Pear (<i>Pyrus communis</i>), Apple (<i>Malus domestica</i>), oak (<i>Quercus petraea</i>), willow(<i>Salix alba</i>)
X. fastidiosa subsp. sandyi	Pear (<i>Pyrus communis</i>), Apple (<i>Malus domestica</i>)
X. fastidiosa subsp. tashke	ornamental tree chitalpa tree (<i>Chitalpa tashkentensis</i>)
Xylella taiwanensis	No new host plants were reported for the pathogen species <i>Xylella</i> <i>taiwanensis</i> that so far was recorded only in pear plants.

Xylella fastidiosa subspecies and host range Sequence types (STs)

- Every subspecies is subdivided into sequence types (STs), each with different host ranges (Sicard *et al.*, 2018; Nunney *et al.*,2019).
- Sequence types found in almond trees (*P. dulcis*) and location (Jeger *et al.*, 2018; Amanifar *et al.*,2019; Bahar *et al.*,2019; EPPO, 2019; Saponari *et al.*, 2019; EFSA, 2020; www.pubmlst.org).
- EFSA (European Food Safety Authority), Delbianco A, Gibin D, Pasinato L, Boscia D, Morelli M, 2023. Update of the *Xylella* spp. host plant database – systematic literature search up to 30 June 2022. EFSA Journal 2023;21 (1):7726, 90 pp. https://doi.org/10.2903/j.efsa.2023.7726

The subspecies categorization of *X. fastidiosa* Sequence types (STs)

- X. fastidiosa can be subdivided into sequence types (STs) using a multilocus sequence typing (MLST) approach based on seven housekeeping genes.
- MLST is a portable and robust platform that is widely used to assign strains to genetic groups while providing information on host plant species that may be susceptible to particular strains.
- In case of ALSD(almond leaf scorch disease) strains belonging to *X. fastidiosa* subsp. *multiplex*, the strains were subdivided into two different genotypes (ALSI and ALSII) below the subspecies by random amplification of polymorphic DNA (RAPD) analysis.

Xylella fastidiosa subspecies Sequence types (STs) and locations

 Current distribution of *X. fastidiosa* subspecies (subspecies pauca, fastidiosa and multiplex) was reported, together with the identification of several STs in EU.

Country	Region	X. fastidiosa subspecies	Sequence type (ST)	
France	Corse, PACA Region	multiplex	ST6	
France	Corse, PACA Region	multiplex	ST7	
France	PACA Region	pauca	ST53	
Italy	Apulia	pauca	ST53	
Italy	Tuscany	multiplex	ST87	
Portugal	Área metropolitana do Porto	multiplex	ST7	
Spain	Balearic Islands	fastidiosa	ST1	
Spain	Balearic Islands, Alicante province, Autonomous Region of Madrid	multiplex	ST6	
Spain	Balearic Islands	multiplex	ST7	
Spain	Balearic Islands	pauca	ST80	
Spain	Balearic Islands	multiplex	ST81	

Bragard et al.,2019

Xylella fastidiosa subsp. *fastidiosa, multiplex* and *pauca* Sequence types (STs) and locations

Subspecies	Sequence type	Location
Fastidiosa	ST1 (ALSI, Tulare, M23, G-genotype, STL)	USA (California), Spain (Majorca), Israel (Hula Valley)
Multiplex	ST6 (ALSII)	USA (San Joaquin County-California), Spain (Majorca, Alicante), France (Corsica)
	ST7 (M12, A-genotype)	USA (Kern County-California), Spain (Majorca), France (Corsica)
	ST27	USA
	ST81	Spain (Majorca), Spain (Menorca)
	ST87	Italy (Tuscany)
	-	Iran (Chahar Mahal-va-Bakh-tiari, West Azerbaijan, Semnan)
Pauca	ST53	Italy (Apulia), France (Corsica)
	ST80	Spain (Ibiza)
	ST78	Argentina

According to Amanifar *et al.*,2019, in Iran, there are two subspecies of this plant pathogen after considering gene sequencing and differences in biological and morphological traits of bacterial colonies, namely, subsp. *fastidiosa* isolated from grapes and subsp. *multiplex* isolated from pistachios and almonds (Amanifar *et al.*, 2014, 2016). However, more gene sequencing is necessary to determine the sequence types present in Iran.

Greco *et al.*,2021

Xylella fastidiosa subsp. *fastidiosa, multiplex* and *pauca* Sequence types (STs) and locations

 Sequence types found on peach (*P. persica*), European plum (*P. domestica*), and Japanese plum (*P. salicina*) trees and location (<u>Della Coletta-Filho et</u> al., 2017; EFSA, 2020; www.pubmlst.org).

Host	Subspecies	Sequence type	Location
Peach	Multiplex	ST26	USA (Riverside County-California)
		ST10	USA (Georgia, Florida, Orange County-California)
	Pauca	ST53	France (Corsica)
European plum	Multiplex	ST6	Spain (Majorca)
		ST10	USA (Georgia)
		ST26	USA (Riverside County-California)
		ST63	Brazil
		ST81	Spain (Majorca, Menorca)
	Paucapauca	ST71	Brazil
Hybrid plum	Multiplex	ST41	USA (Georgia)

Peach and plum trees can be infected by subsp. *pauca*, while subsp. *multiplex* is the etiological factor of PPD and PLS in countries where these diseases have long represented a serious phytosanitary problem.

Greco *et al*.,2021

Xylella fastidiosa subsp. *fastidiosa, multiplex* and *pauca* Sequence types (STs) and locations

 Sequence types found in other *Prunus* species and locations (<u>EFSA, 2020</u>; <u>www.pubmlst.org</u>).

Host	Subspecies	Sequence type	Location
Apricot (P. armeniaca)	Multiplex	ST6	Spain (Alicante)
		ST46	USA (Riverside County-California)
		ST26	USA (Riverside County-California)
Purple leaf plum (P. cerasifera)	Multiplex	ST6	France (Corsica)
		ST7	France (Corsica)
		ST15	USA (Riverside County-California)
		ST34	USA (Riverside County-California)
		ST40	USA
Cherry (<i>P. avium</i>)	Fastidiosa	ST1	USA (San Bernardino-California), Spain (Majorca)
	Pauca	ST53	Italy (Apulia)
Prunus sp. (decorative prunus)	Multiplex	ST26	USA (Riverside County-California)

lists the sequence types found in other species of the *Prunus* genus. Of these, an uncommon disease caused by *X. fastidiosa* is leaf scorch of purple-leafed plum (*P. cerasifera*), which was observed during a survey conducted between 2003 and 2004 in southern California (United States). The symptoms of this disease are leaf scorching and plant decline, similar to those of ALSD and PLS

Greco *et al.*,2021

Nomenclature of *X. fastidiosa* subsp. *pauca* pau'ca L. fem. adj. pauca few

- As more *pauca* strains become studied, their common and peculiar genetic characteristics are being described in increasing detail.
- This information enables a better understanding of intra and inter-subspecies evolution in *X. fastidiosa*, as well as their relationship with host range and geographic distribution.

Host plant species naturally infected Olive Quick Decline symptoms (OQDS) *X. fastidiosa* subsp. *pauca*

- The highest number of plant species naturally infected is recorded for:
- 1. X. fastidiosa subsp. multiplex (203 hosts), followed by
- 2. X. fastidiosa subsp. pauca (57 hosts), and
- *3. X. fastidiosa* subsp. *fastidiosa* (53 hosts).
- A dramatic outbreak of Xf subsp. pauca (Xfp) strain ST53, namely CoDiRO (Complesso del Disseccamento Rapido dell'Olivo, meaning OQDS), decimating olive trees was discovered in 2013 in Apulia, Southern Italy(Saponari *et al.*,2014 and Cariddi *et al.*,2014).

Host plant species naturally infected Olive Quick Decline symptoms (OQDS) *X. fastidiosa* subsp. *pauca*

- Olive quick decline syndrome (OQDS) has been reported in the Salento area (Apulia region, southern Italy)(Saponari *et al.*,2014 and Cariddi *et al.*,2014).
- Strains from subspecies *pauca* have been recently isolated from olive trees with olive quick decline syndrome(OQDS) symptoms in Brazil (Safady *et al.*,2019) confirming its status of emerging pathogen in different regions and crops.

Predisposing Factors for "Olive Quick Decline Syndrome(OQDS) Synergistic action on *X. fastidiosa* subsp. *pauca*

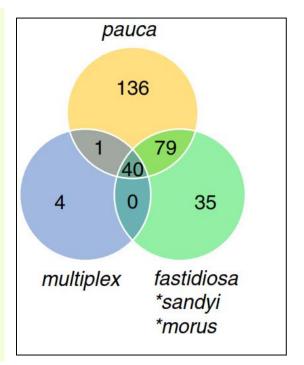
- Indeed, a number of environmental factors can interact with the host and the pathogen either to predispose and enhance host colonization and infection by the pathogen or to incite microorganism pathogenicity in terms of virulence and aggressiveness.
- Associated with the syndrome, several phytopathogenic fungi were detected in the rhizosphere, endosphere and phyllosphere of the trees, along with the phytopathogenic bacterium *Xylella fastidiosa* subsp. *pauca*.

Predisposing Factors for "Olive Quick Decline Syndrome(OQDS) Synergistic action on *X. fastidiosa* subsp. *pauca*

- Together with *Xylella fastidiosa* subsp. *pauca*, some pathogenic fungi such as *Phaeoacremonium* spp. have been found associated with the disease.
- The main predisposing factors to the disease seem to be:
- local cultivar susceptibility, depletion of some micronutrients in the soil that could be related to some agronomical practices favoring the depletion of soil fertility, an incorrect pruning cycle, climatic changes that result in increased soil waterlogging, and frost and drought events.

Predisposing Factors for "Olive Quick Decline Syndrome(OQDS) Synergistic action on *X. fastidiosa* subsp. *pauca*

- X. fastidiosa subsp. pauca, along with several phytopathogenic fungi such as Phaeoacremonium spp. plus abiotic factors causes dramatic damage to olive trees, with symptoms of leaf scorching and scattered desiccation of twigs and branches.
- Severe wilting in leaves, twigs, and branches. Often the disease progression results in plant death.



Scortichini,2020

Nomenclature of X. fastidiosa subsp. pauca

Relationships between three groups (*pauca, multiplex* and the third one resulting from the grouping of subsp. *fastidiosa, sandyi* and *morus*)

- Using SkIf, a revised taxonomy of *X. fastidiosa* into three major clades defined by:
- the subspecies *pauca* (clade I),
- 2. *multiplex* (clade II), and
- 3. The combination of *fastidiosa*, *morus* and *sandyi* (clade III).

SkIf (Specific k-mers Identification) is a robust and rapid software, freely available, that can be dedicated to the comparison of sequence datasets and is applicable to any field of research. Here it was designed and exploited for comparative genomics on a dataset of 46 *X. fastidiosa* genomes, including seven newly sequenced individuals.

Denancé et al.,2019

Host plant species naturally infected *X. fastidiosa* subsp. *pauca*

No.	Plant hosts	No.	Plant hosts
1	(Acacia saligna)	13	(Dimorphotheca fruticosa)
2	(<i>Acacia</i> sp.)	14	(<i>Dodonaea viscosa</i>)
3	(Amaranthus retroflexus)	15	(Eremophila maculate)
4	(Asparagus acutifolius)	16	(Erigeron bonariensis)
5	(Catharanthus roseus)	17	(<i>Erigeron</i> sp.)
6	(Chenopodium album)	18	(Erigeron sumatrensis)
7	(<i>Cistus albidus</i>)	19	(Euphorbia chamaesyce)
8	(<i>Cistus creticus</i>)	20	(Euphorbia terracina)
9	(<i>Cistus sinensis</i>)	21	(<i>Grevillea juniperina</i>)
10	(<i>Citrus</i> sp.)	22	(<i>Hebe</i> sp.)
11	Arabic coffee (Coffea arabica)	23	(Heliotropium europaeum)
12	(<i>Coffea</i> sp.)	24	(<i>Hibiscus rosa-sinensis</i>)

Host plant species naturally infected *X. fastidiosa* subsp. *pauca*

No.	Plant hosts	No.	Plant hosts
25	Mallow (Hibiscus sp.)	37	(<i>Pelargonium</i> sp.)
26	(<i>Laurus nobilis</i>)	38	(Periwinkle)
27	(Lavandula angustifolia)	39	(Phillyrea latifolia)
28	(Lavandula dentata)	40	Pistachio (<i>Pistacia vera</i>)
29	(Lavandula sp.)	41	(Polygala myrtifolia)
30	(Lavandula stoechas)	42	(<i>Polygala</i> sp.)
31	(Myoporum insulare)	43	Cherry (Prunus avium)
32	(Myrtus communis)	44	(Prunus domestica)
33	(Nerium oleander)	45	(Prunus dulcis)
34	(<i>Olea europaea</i>)	46	(<i>Prunus</i> sp.)
35	(<i>Olea europaea</i> subsp. <i>sylvestris</i>)	47	(Prunus persica)
36	(Pelargonium fragrans)	48	(<i>Rhamnus alaternus</i>)

Delbianco *et al.*,2022

Host plant species naturally infected *X. fastidiosa* subsp. *pauca*

No.	Plant hosts	No.	Plant hosts
49	Sage (<i>Salvia officinalis</i>)		
50	Salvia rosmarinus		
51	<i>Salvia</i> sp.		
52	Spartium junceum		
53	Holly oak (<i>Quercus ilex</i>)		
54	Ulex parviflorus		
55	Periwinkle (Vinca minor)		
56	Westringia fruticosa		
57	Westringia glabra		

Host plant species naturally infected X. fastidiosa subsp. sandyi

No.	Plant hosts	No.	Plant hosts
1	Arabic coffee (Coffea arabica)		
2	<i>Coffea</i> sp.		
3	Coffea canephora		
4	<i>Hemerocallis</i> sp		
5	Jacaranda mimosifolia		
6	Magnolia grandiflora		
7	Nandina domestica		
8	Oleander or nerium (Nerium oleander)		
9	Myrtle-leaf milkwort (Polygala myrtifolia)		

Host plant species artificially infected *X. fastidiosa* subsp. *pauca*

- 1. Bidens pilosa
- 2. Brachiaria decumbens
- 3. Brachiaria plantaginea
- 4. Catharanthus roseus
- 5. Citrus reticulata
- 6. Citrus sinensis
- 7. *Citrus* sp.
- 8. Citrus x *nobilis*
- 9. Coffea arabica
- 10. *Coffea* sp.
- 11. Echinochloa crus-galli
- 12. Jasminum azoricum
- 13. Medicago sativa
- 14. Nerium oleander
- 15. Nicotiana clevelandii
- 16. Nicotiana tabacum
- 17. Ocimum basilicum

18. Olea europaea 19. Polygala myrtifolia 20. Solanum americanum 21. Arabidopsis thaliana 22. Periwinkle (common name) 23. Chenopodium album 24. Digitaria horizontalis 25. Malus domestica 26. Prunus avium 27. Prunus domestica 28. Prunus dulcis 29. Pyrus communis 30. Quercus petraea 31. Salix alba 32. Salvia rosmarinus

33. Vitis vinifera

Host plant species naturally infected *X. fastidiosa* subsp. *morus*

No.	Plant hosts	No.	Plant hosts
1	White mulberry (Morus alba)		
2	Red mulberry (Morus rubra)		
3	Mulberries (<i>Morus</i> sp.)		
4	Nandina/heavenly bamboo (Nandina domestica)		

Host plant species naturally infected X. fastidiosa subsp. multiplex, the causal agent of phony peach disease(PPD)

_				
	Acacia dealbata (ACADA)	Host		
	Acacia saligna (ACASA)	Host	Lavandula angustifolia (LAVAN)	Host
	Acer pseudoplatanus (ACRPP)	Host	Lavandula dentata (LAVDE)	Host
	Anthyllis hermanniae (AYLHE)	Host	Lavandula stoechas (LAVST)	Host
	Artemisia arborescens (ARTAO)	Host	Lavandula x heterophylla (LAVHE)	Host
	Artemisia sp. (ARTSS)	Host	Medicago arborea (MÉDAR)	Host
	Asparagus acutifolius (ASPAC)	Host	Medicago sativa (MEDSA)	Host
	Calicotome spinosa (CCOSP)	Host	Metrosideros excelsa (MTDEX)	Host
	Calicotome villosa (CCOVI)	Host	Myrtus communis (MYVCO)	Host
	Carya illinoinensis (CYAIL)	Host	Olea europaea (OLVEU)	Host
	Cercis siliquastrum (CCSSI)	Host	Pelargonium graveolens (PELGV)	Host
	Cistus creticus (CSTIC)	Host	Perovskia abrotanoides (PEKAB)	Wild/Weed
	Cistus monspeliensis (CSTMO)	Host	Phagnalon saxatile (PGASA)	Host
	Cistus salviifolius (CSTSA)	Host	Phlomis fruticosa (PLMFR)	Host
	Cistus x incanus (CSTIS)	Host	Pistacia vera (PIAVE)	Host
	Convolvulus cneorum (CONCN)	Host	Polygala myrtifolia (POGMY)	Host
	Coprosma repens (CPMRE)	Host	Prunus armeniaca (PRNAR)	Host
	Coronilla valentina (CZRVL)	Host	Prunus cerasifera (PRNCF)	Host
	Coronilla valentina subsp. glauca (CZR\	/G)	Prunus cerasus (PRNCE)	Host
	Cytisus scoparius (SAOSC)	Host	Prunus domestica (PRNDO)	Host
	Cytisus villosus (CZSVI)	Host	Prunus dulcis (PRNDU)	Host
	Dimorphotheca ecklonis (OSPEK)	Host	Prunus persica (PRNPS)	Host
	Elaeagnus angustifolia (ELGAN)	Host	Quercus suber (QUESU)	Host
	Erigeron karvinskianus (ERIKA)	Host	Rhamnus alaternus (RHAAL)	Host
	Euryops chrysanthemoides (EYOCH)	Host	Robinia pseudoacacia (ROBPS)	Host
	Euryops pectinatus (EYOPE)	Host	Rosa canina (ROSCN)	Host
	Ficus carica (FIUCA)	Host	Rosa Cluster-flowered bush hybrids (RC	DSXF)
	Fraxinus angustifolia (FRXAN)	Host	Salvia rosmarinus (RMSOF)	Host
	Genista corsica (GENCO)	Host	Santolina chamaecyparissus (SNTCH)	Host
	Genista ephedroides (GENEP)	Host	Spartium junceum (SPUJU)	Host
	Genista x spachiana (GENSA)	Host	Strelitzia reginae (STZRE)	Host
	Grevillea juniperina (GREJU)	Host	Ulex europaeus (ULEEU)	Host
	Hebe (1HBEG) Host		Ulex minor (ULEMI)	Host
	Hebe elliptica (HBEEL)	Host	Vaccinium (1VACG) Host	
	Helichrysum italicum (HECIT)	Host	Vaccinium corymbosum (VACCO)	Host
	Helichrysum sp. (HECSS)	Host	Vaccinium virgatum (VACVG)	Host
	Helichrysum stoechas (HECST)	Host	Vitis aestivalis (VITAE)	Host
	Ilex aquifolium (ILEAQ)	Host	Westringia fruticosa (WESRO)	Host

Johnson et al.,2021

From EPPO Global Database, 2021.

Diseases caused artificially by *Xylella fastidiosa* subspecies

- Within the XF-ACTORS project, the susceptibility of
- Pear (*Pyrus communis*) to subspecies *fastidiosa*, *multiplex*, *pauca* and *sandyi*),
- Apple (*Malus domestica*) to subspecies *multiplex*, *pauca* and *sandyi*),
- Oak tree (*Quercus petraea*) to subspecies *fastidiosa*, *multiplex* and *pauca*), and
- White willow (*Salix alba*) to subspecies *fastidiosa*, *multiplex* and *pauca*) has been proved in artificial infections by needle inoculation.
- Although in these experiments conducted under greenhouse conditions, the pathogen was detected at some distance from the inoculation point (e.g. 40 cm, as reported in the case of pear and apple).
- Further studies will need to prove whether these new hosts are likely to sustain infection under natural conditions.

- Category A: Plant species positive with at least two detection methods (among: symptoms observation on the test plant in experimental vector transmission, ELISA, other immunological techniques, PCR-based methods, sequencing and pure culture isolation) or positive with one method (between: sequencing, pure culture isolation).
- Category B: The same as point A, but also including microscopy: plant species positive with at least two detection methods (among: microscopy, symptoms observation on the test plant in experimental vector transmission, ELISA, other immunological techniques, PCR-based methods, sequencing and pure culture isolation) or positive with one method (between: sequencing, pure culture isolation).

- Category C: Plant species positive with at least one detection method (among: symptoms observation on the test plant in experimental vector transmission, ELISA, other immunological techniques, PCRbased methods, sequencing and pure culture isolation).
- Category D: Plant species positive with at least one detection method including microscopy (microscopy, symptoms observation on the test plant in experimental vector transmission, ELISA, other immunological techniques, PCR-based methods, sequencing and pure culture isolation).
- Category E: All positives plant species reported, regardless of the detection methods (positive records but without the detection method specified, symptom observations, microscopy, symptoms observation on the test plant in experimental vector transmission, ELISA, other immunological techniques, PCR-based methods, sequencing, pure culture isolation).

Number of host plant species, genera and families of *Xylella* spp. according to categories A, B, C, D, E (based on the detection methods applied:

	Α	В	С	D	E
Number of host plant species	412	417	648	657	664
Number of host plant genera	190	191	298	298	299
Number of host plant families	68	68	88	88	88

 Number of host plant species, naturally infected, susceptible to the different *X. fastidiosa* subspecies according to categories A, B, C, D, E.

Category	fastidiosa	morus	multiplex	pauca	sandyi	tashke	Unknown
А	40	2	19	20	5	0	89
В	41	2	19	21	5	0	94
С	78	2	31	33	11	1	202
D	78	2	31	33	11	1	208
E	79	2	32	33	11	1	216

 The highest number of plant species naturally infected is recorded for *X. fastidiosa* subsp. *multiplex* (203) according to category A, up to 210 for category E), followed by subsp. *pauca* and subsp. *fastidiosa*.

Category	fastidiosa	fastidiosa_sandyi	morus	multiplex	pauca	sandyi	tashke	Unknown
Α	50	2	4	203	53	7	1	168
В	50	2	4	203	53	7	1	173
С	53	2	4	210	57	8	1	368
D	53	2	4	210	57	8	1	374
E	53	2	4	210	57	8	1	385

Strains differentiation Based on pathogenicity, nutritional requirements, and genetic homology

- Strains differ in characteristics such as:
- Host range (the ability to cause disease/pathogenicity);
- 2. Nutritional requirements;
- 3. Genetic homology.

Characteristics differentiating Xylella from Xanthomonas

Characteristic	Thermomonas haemolytica ^b	Xanthomonas campestris ^e	Pseudoxanthomonas broegbernensis ^d	Stenotrophomonas maltophilia ^e	Luteimonas mephitis ^f	Xylella fastidiosa ^g
Temperature optimum (°C)	37-50	28	28	35	28	26-28
Nitrate reduction	_	_	_	+	_	_
Esculin hydrolysis	_	+	-	+	_	_
Susceptibility to:						
Ampicillín	+	_	-	-	_	+
Penicillin G	+	_	_	-	_	_
Erythromycin	+	_	_	-	_	
Kanamycin	+	+	_	+	V +	+
Neomycin	+	-	+	-	V-	
Streptomycin	+	+	-	-	-	-
Predominant fatty acid:						
C15:0 iso	+	+	+	+	+	
C _{15:0 anteiso}		+	+	+		+
C16:0			+			
C16:0 iso	+					
C ₁₆₁		+	+			+
C _{17:0}					+	+
C _{17:0 iso}						
C _{17:1}					+	
C _{17:1 iso}			+			
Hydroxy fatty acid:						
C _{10.0 2OH}						+
C _{11:0 iso 2OH}			+			
C _{11:0 iso SOH}	+	+	+	+	+	
C _{12:0 3OH}		+		+		
C _{180 2OH}				+		
C _{12:0 iso 3OH} Major polar lipids. ^h		+		+		
Diphosphatidylglycerol	+	+		+		
Phosphatidylethanolamine	+	+		+		
Phosphatidylglycerol	+	+		+		
Phosphatidylmonomethylethanolamine		+				
Unidentified phospholipid		+				
Quinone system	Q-8	Q-8	Q-8	Q-8	Q-8	
Major polyamines. ⁱ				-		
Čadaverine				+		
Spermidine	+	+		+		

*Symbols: +, positive for all strains; -, negative for all strains; nd, no data; V+, most strains are resistant; V-, most strains are susceptible.

^bData from Busse et al. (2002).

Data from Oyaizu and Komagata (1983), Busse and Auling (1988), Auling et al. (1991), Yang et al. (1993b, d).

^dData from Finkmann et al. (2000).

*Data from Oyaizu and Komagata (1983), Palleroni (1984), Busse and Auling (1988), Stead (1992), Yang et al. (1993b, d), Palleroni and Bradbury (1993), Vauterin et al. (1995, 1996b), Finkmann et al. (2000).

^fData from Finkmann et al. (2000).

⁸Data from Wells et al. (1987).

^hData on polar lipids for Xanthomonas campestris and Stenotrophomonas maltophilia from Busse et al. (2002).

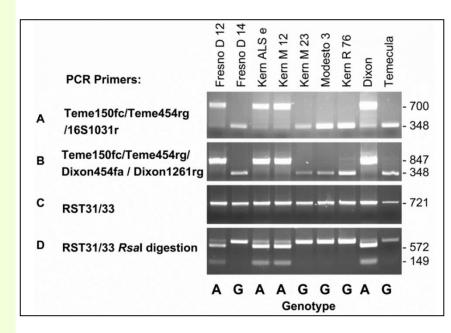
No data for Pseudoxanthomonas broegbernensis, Luteimonas mephitis, and Xylella fastidiosa.

Initial Xf strain differentiation into Pierce's disease (PD) group strains and phony peach (PP) group strains research

	PD group	PP group
Identification test	strains"	strains" ^D
Growth on:		
Nutrient glucose agar		
PD2 agar	+	
PW, BCYE, and CS-20 agar	+	+
c "Intensity of ELISA reaction with antisera to:"		
Pierce's disease strain	+++	+
Phony peach strain	+	+++
Digestion of PCR amplification product by <i>Rsal</i> ^d		+

^a*Xylella fastidiosa* strains that produce symptoms on *Vitis vinifera* grapevines and grow on PD2 agar.

^bDiverse group of *X fastidiosa* strains that will not produce symptoms on grapevine and will not grow on PD2 agar, probably several different, uncharacterized pathotypes.


^cRelative intensity of the absorbance from the enzyme-linked immunosorbent assays of antisera with strains from the two groups.

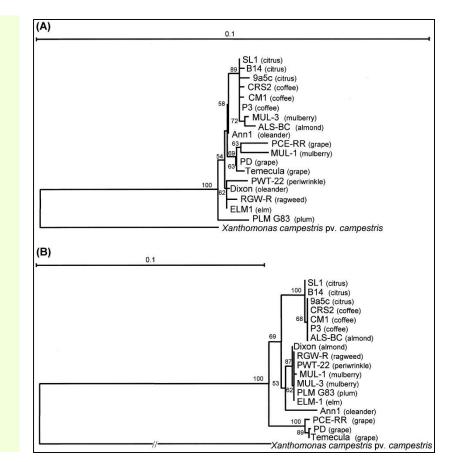
^dThe amplification product (733 bp) of the gene rpoD gene which encodes sigma 70 factor using primer pairs of RST31/RST33, is further digested with *RsaI* restriction enzyme in order to differentiate two pathotype groups of *X fastidiosa* strains, the Pierce's disease group and phony peach group.

Hendson et al.,2001; Schaad et al.,2001

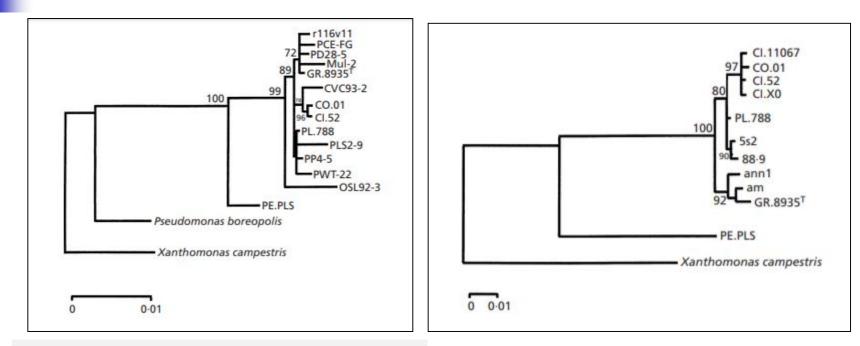
Initial Xf strain differentiation into Pierce's disease(PD) group strains and phony peach(PP) group strains research

- Panel C is the 733 bp amplified rpoD gene which encodes sigma 70 factor.
- Panel D is the RsaI digestion of RST31-RST33 amplicons.
 Numbers on the right are DNA fragment size in base pairs.
- Overnight RsaI restriction enzyme incubation, rather than 1 h, resulted in complete DNA digestion.
- Two DNA fragments (149 and 572 bp) were evidenced.

Characters useful for differentiating subspecies of *Xylella fastidiosa*


- Figures are mean percent.
- +/-, very slow growth, 10-12 days for visible colonies; +, slow growth, 8–10 days for visible colonies; ++, relatively fast growth, 5-7 days for visible colonies;
- PD2, Pierce's disease medium; PW, periwinkle medium; taken from Hopkins.
- Relative intensity; +, weak; +++, strong; taken from Hopkins.
- Serology tests differentiate subsp. pauca from subsp. piercei and subsp. multiplex.

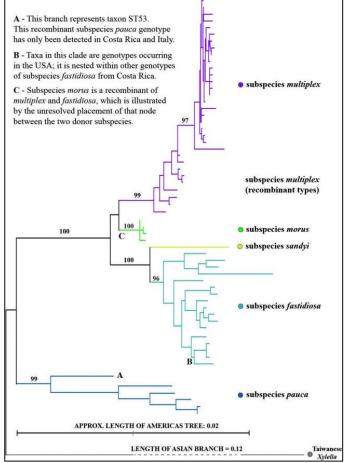
Character	Subspecies						
	piercei	multiplex	раиса				
DNA/DNA							
relatedness to:1							
piercei	85	58	41				
multiplex	58	84	45				
раиса	41	45	87				
ITS similarity to:1							
piercei .	100	98.7	97.9				
multiplex	98.7	100	99.2				
раиса	97.9	99.2	100				
Growth on: ²							
PD2 medium	++	+/-	+/-				
PW medium	++	++	+				
Susceptibility to:							
Penicillin	low	high	high				
Carbenicillin	medium	low	low				
ELISA, antisera to: ³							
piercei	+++	+	ND				
раиса	+	+++	ND				
Hosts	Grape, almond, alfalfa, maple	Peach, plum, almond, elm sycamore, pigeon grape	citrus				


Schaad et al.,2004

Phylogenetic relationships among X. fastidiosa strains Using 16SrRNA and gyrB sequences

- Phylogenetic trees based on the nucleotide sequences of the 16S rRNA (A) and gyrB (B) genes of X. fastidiosa strains.
- All X. fastidiosa strains yielded nearly complete 16S rRNA gene sequences of 1,452 bp.
- When only one accession number is shown, it represents a *gyrB* sequence.

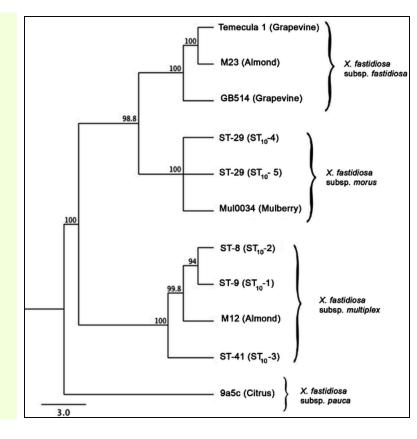
Phylogenetic relationships of *Xylella fastidiosa* strains from different hosts, based on 16S rDNA and 16S-23S intergenic spacer sequences The citrus, coffee, peach and plum strains were closely related and separate from grapevine strains


Phylogenetic tree constructed using the neighbourjoining method, based on 16S rDNA sequence data for *Xylella fastidiosa* and *Pseudomonas boreopolis*, with *Xanthomonas campestris* as the outgroup. Gaps and missing information excluded from the analysis. The numbers above the branches are bootstrap values obtained for 1000 replications (expressed as percentages; only values greater than 70% are shown). Bar, 1% sequence divergence.

Phylogenetic tree constructed using the neighbourjoining method, based on 16S–23S intergenic spacer sequence data for *Xylella fastidiosa*, with *Xanthomonas campestris* as the outgroup. Gaps and missing information were excluded from the analysis. The numbers above the branches are bootstrap values obtained for 1000 replications (expressed as percentages; only values greater than 70% are shown). Bar, 1% sequence divergence.

Mehta and Rosato, 2003

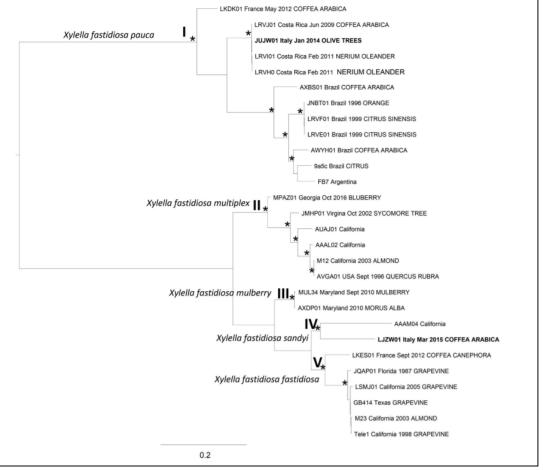
A phylogenetic tree based on genetic distances of all available *Xylella fastidiosa* sequence types identified using multilocus sequence typing


- The five currently and generally accepted subspecies are labeled with different colors, while the Taiwanese genotype causing pear leaf scorch is shown in gray at the bottom of the tree, with a not-to-scale branch due to its dissimilarity to the other taxa.
- We highlight three specific branches of interest with letters
 A, B, and C, with associated descriptions on the figure itself.

Almeida and Nunney, 2015

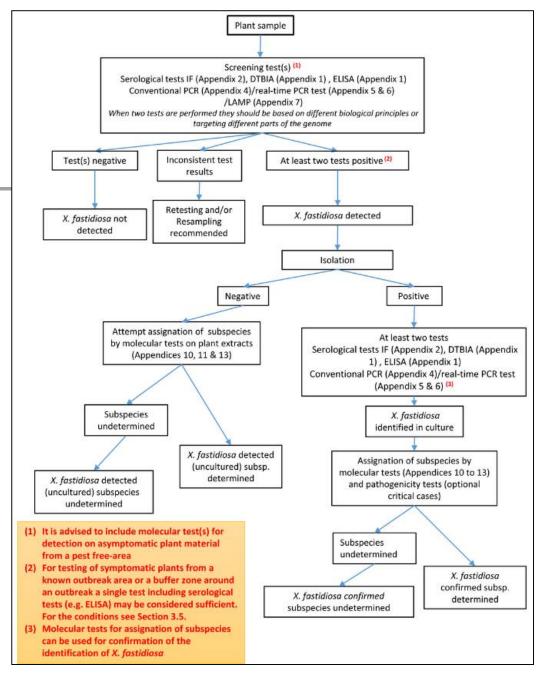
The phylogeny of *Xylella fastidiosa* Distance tree of sequence types found infecting urban trees

- A distance tree was constructed with 7,416 bp of concatenated sequence data for each *X. fastidiosa* sequence type.
- The two mulberry strains form a clade that represents the newly described subspecies morus, while amenity tree strains nest closely within the subsp. multiplex clade.
- Percentages represent bootstrap support from the re-sampling distribution.
- Values in parenthesis represent the ten locus sequence types in this analysis.

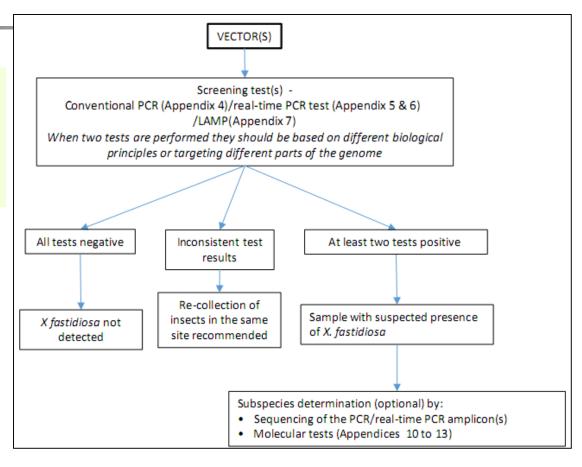

The phylogeny

Maximum-likelihood of *Xylella fastidiosa* spp. SNPs(single nucleotide polymorphisms) alignment. * along the branches indicating a statistical value from bootstrap ≥99%. Clades I–V are highlighted. The Italian strains are in bold

All the genomes available for *Xylella fastidiosa* spp. were downloaded from NCBI. A phylogeographic analysis was performed using BEAST.


SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments.

This dataset included complete genomes from USA (California, Texas, Florida, Maryland and Virginia) n = 14, Argentina n = 1, France n = 3, Italy n = 2, Costa Rica n = 3, Brazil n = 5.


Cella et al.,2018

Flow diagram for the diagnostic procedure for *Xylella fastidiosa* in plant material.

EPPO,2016 and 2018

Flow diagram for the diagnostic procedure for *Xylella fastidiosa* in vectors.

EPPO,2016 and 2018

Advantages and disadvantages of diagnostic techniques used to detect *X. fastidiosa*

Diagnostic Test	Advantages	Disadvantages
ELISA fast	fast, inexpensive	false positive possible, false negative possible
PCR	most sensitive	does not distinguish dead from live bacteria, expensive
Culture	false positive not possible	takes several weeks

Sampling of plant material and sample preparation in the laboratory Sampling period for symptomatic or asymptomatic plants and insects

- To maximize the likelihood of detection, sampling should be performed during the period of active growth of the plants.
- 1. For outdoor plants in Europe this active growth period is usually from late spring to autumn.
- 2. For tropical plant species grown indoors such as coffee plants, sampling may be performed all year round.
- Laboratory samples = branches/cuttings with attached leaves including mature leaves preferably be collected from a single plant.
- Young growing shoots should be avoided.
- 1. Symptomatic plants: branches/cuttings representative of the symptoms seen on the plant
- 2. Asymptomatic plants: the sample should be representative of the entire aerial part of the plant.
- Sampling for insects should preferably be done from late spring until early autumn.

Sampling of plant material and sample preparation in the laboratory Sampling period for symptomatic or asymptomatic plants

- The concentration of the bacterium in a plant depends upon environmental factors, strains and the host plant species or cultivars.
- Sampling should be performed during the period of active growth of the plants (Hopkins, 1981).
- For tropical plant species grown indoors, such as coffee plants, sampling may be performed all year round.
- For outdoor plants in Europe this active growth period is usually from late spring to autumn.
- In autumn 2013, the presence of *Xylella fastidiosa* was detected in olive stands (Sapnari *et al.*,2017.

Sampling of plant material and sample preparation in the laboratory Sampling period for symptomatic or asymptomatic plants

- Another studies were conducted during unusually mild winters.
- But usually winters with more severe sub-freezing temperatures might reduce the survival rate of *X*. *fastidiosa* (Purcell, 1981).
- Perhaps even in evergreen plants such as California blackberry and periwinkle (Purcell and Saunders, 1990).

Sampling of plant material and sample preparation in the laboratory Sampling process

- Samples should be processed as soon as possible after arrival.
- If the plant samples originate from areas where infected vectors may occur, it is recommended to check whether insects are present in the sample before opening the bags.
- If any insects are present, samples should be stored in the refrigerator for approximately 12 h.
- For isolation, samples may be kept refrigerated for up to 3 days.

Sampling of plant material and sample preparation in the laboratory Sampling process

- Samples should be inspected for symptoms and, if present, symptomatic leaves (including their petioles) should be selected and processed (removing the necrotic and dead tissue).
- 2. If no symptoms are noted, leaves should be representative of the entire sample received in the laboratory.
- Dirty samples should be cleaned.

Petioles of suspected grapevines were placed into Ziploc bags, and placing those bags on ice. Once on ice, the samples must be transported to cold storage (4°C or -20°C) where they can be stored for a short period of time because nucleic acid extraction and freezing needs to occur before samples lose their viability(Jones *et al.*,2016).

EPPO,2018

Laboratory sample

Minimum number of leaves (including their petioles) to be used and approximate weight of the laboratory sample

Type of sample	Host plants/type of tissue	Minimum number of leaves per laboratory sample	Approximate weight of the laboratory sample
Samples from individual plants with leaves (symptomatic or asymptomatic)	Petioles and/or midribs or leaves of large size such as <i>Coffea</i> sp., <i>Ficus</i> sp., <i>Vitis</i> sp., <i>Nerium oleander</i>	5	0.5-1 g
	Petioles and/or midribs of leaves of small size such as <i>Polygala</i> <i>myrtifolia</i> and <i>Olea</i> sp.	25	0.5-1 g
	Plant species without petioles or with small petiole and midrib	25	0.5-1 g
Dormant plants or cuttings	Xylem tissue	N.A(not applicable)	0.5-1 g
Other cuttings	Stem	N.A(not applicable)	1 g
Composite sample from asymptomatic plants from several plants (Bergsma, coffee, olive)	Samples collected from, e.g., imported consignments or nursery monitoring	100-200	Up to 10 g (per sample or sub sample) or 10-50 g

EPPO,2016 and 2018; Diagnostic protocols for regulated pest,2018

Plant sample transport and storage in the laboratory

- Once samples are collected, they should be kept cool (e.g. 4-15°C) and transported to the laboratory as quickly as possible.
- Lower temperatures can reduce sample deterioration.
- However, X. fastidiosa does not survive well in cold temperatures and for culture isolation work it is better to process samples immediately rather than refrigerate.
- 1. If necessary, however, samples for isolation may be kept refrigerated (e.g. 4°C) for up to three days.
- 2. For other tests, samples may be refrigerated for up to one week.
- For longer term storage, samples may be stored at -20°C or -80°C for molecular or serological detection.

Isolation procedure Surface sterilization Plant tissue segments

- It is very important to surface sterilize the sample in order to avoid contaminants, because *X. fastidiosa* grows very slowly (up to 30 days) and can be readily overgrown by other microorganisms.
- Petiole or midrib samples are surface sterilized by immersion in 70% ethanol for 1 min and flaming, or in 1% bleach for 2 min, followed by two rinses in sterile distilled water. Surface-sterilized plant tissue segments are cut in the middle, squeezed with flamesterilized needle-nose pliers, and the sap that exudes can be blotted directly onto media (Hopkins, 2001).

Isolation procedure Surface sterilization Plant tissue segments

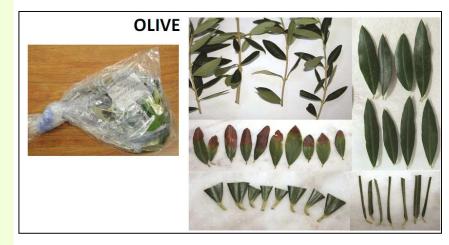
- Alternatively, tissue is ground in PBS at ratios of 1:10 and 1:100 with a mortar and pestle or a homogenizer (e.g. Homex) and then plated onto two different types of specific media (e.g. PD2, BCYE, PWG).
- The application of ultrasonication during the extraction process has been shown to improve isolation from asymptomatic *Coffea arabica* plants.
- After tissue is ground in PBS, the crushed plant material is ultrasonicated for 30-60s at 40 kHz.

Isolation procedure Culture defined media Plant tissue segments

- The surface-sterilized twigs (thin slices of 1-year-old twigs, 1-2 mm thick) can be sliced tangentially(peripherally) with a sterile scalpel and the slices can be directly placed on the agar medium in Petri dishes.
- The plates have to be incubated at 28°C for 8-10 days. The plates are kept in plastic bags to prevent desiccation.

POnTE Project

Isolation procedure Surface sterilization Plant tissue segments


- The plating process consisted of removing the terminal 5 mm of each piece of petiole and dissecting the tissue into 3-5mm segments.
- Each segment was squeezed in the center using forceps or pliers and the fluid which was discharged from each end of the segment was blotted onto PW.
- A total of 10-12 attempts per sample.

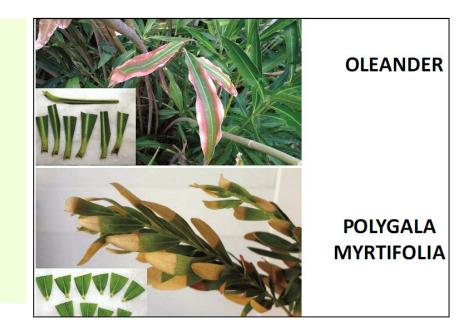
Isolation procedure Surface sterilization Insect vectors

- Insect vectors are surface sterilized as above and the heads are severed from the body and homogenized in 2 ml PBS.
- Drops of the insect tissue are plated onto specific media as above i.e. PD2, BCYE, PWG.

Sample preparation for culturing, PCR analysis and ELISA test Olive samples

- Olive twigs (at least 10) collected from a sampled tree.
- Leaves showing leaf scorching and symptomless leaves (N. 8-10 corresponding to 0.5-1 gr) selected for the sample preparation,
- 2. petioles and midveins excised for the extraction.

Sample preparation for culturing, PCR analysis and ELISA test Almond and cherry samples


- Leaves of almond(up) and cherry (down) collected in late summer showing leaf scorch symptoms.
- The petioles and the basal parts of the almond (up) and
- 2. cherry (down) leaves used for extraction.

Loconsole,2016;..

Sample preparation for culturing, PCR analysis and ELISA test Oleander and Myrtle-leaf milkwort (*Polgala myrtifolia*) samples

- Samples and tissues selected for
- 1. Oleander (up),
- Polygala myrtifolia (down).

Isolation procedure Culture defined media From grapevine

- Necrotic tissue with yellow or burgundy red margins developed at the edge of the leaves and then coalesced.
- Severely affected leaves became fully necrotic and fell prematurely, leaving matchstick-like petioles attached to the cane.
- Affected twigs and branches declined and plant dieback was observed within 1 to 5 years.

Isolation procedure Culture defined media From grapevine

- Isolation can be performed from leaf veins, petiole, small twigs or roots.
- In any case, it is critical to properly surface sterilize the sample and to dilute the plant extract in sample buffer.
- The xylem sap obtained either from the crushing of leaf vein, petiole or small twig or from extraction with vacuum infiltration of small twigs and roots can be streaked on to CS20, PD2, PD3 or B.CYE media.

Isolation procedure Culture defined media From grapevine leaves

- For recovering the bacterium from the leaf, 1.0 g of petiole or leaf vein is first surface sterilized in 0.5% of sodium hypochloride for 10 min and then rinsed in four changes of sterile distilled water and dried in a laminar flow cabinet.
- Subsequently, it is ground in a sterile mortar containing 5 ml of sample buffer (SB) (disodiumsuccinate 1.0 g/l; trisodium citrate 1.0 g/l; K₂HPO₄ 1.5 g/l; KH₂PO₄ 1.0 g/l; 0.02 M of sodiumascorbate; 5% of acid-washed insoluble polyvinylpyrrolidone; pH 7.0), or
- 3. grape sample extraction buffer provided by Agdia (Tris (hydroxymethyl) aminomethane 60.5g/l; sodium chloride 8.0g/l; polyvinylpyrrolidone (PVP), MW 24-40 20.0g/l; polyethylene glycol 10.0g/l; sodium azide 0.2g/l; tween-20 0.5g/l; pH 8.2).

EPPO

Isolation procedure Culture defined media From grapevine twig or root

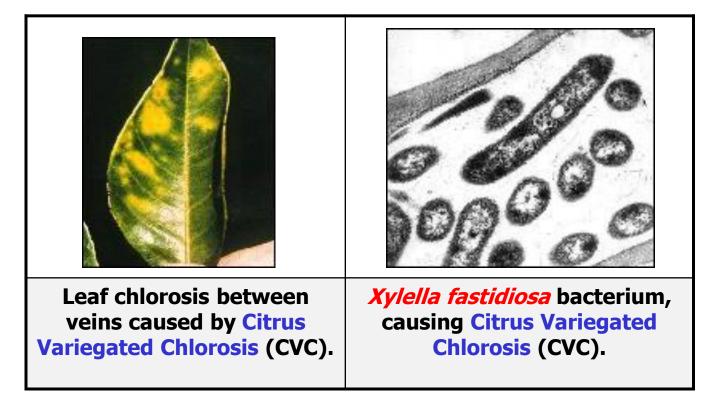
- In case of twig or root, they have to be cut into 1-2 cm sections, stripped of bark, surface sterilized for 5 min in 0.5% of sodium hypochloride with 3% of ethyl alcohol added.
- Then the pieces have to be rinsed in four changes of sterile distilled water and crushed in a sterile mortar containing 5 ml of sample buffer (SB).

Isolation procedure Culture defined media From grapevine twig or root

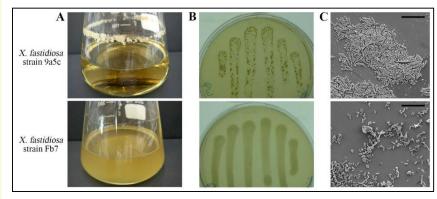
- In case of twig or root, they have to be cut into 1-2 cm sections, stripped of bark, surface sterilized for 5 min in 0.5% of sodium hypochloride with 3% of ethyl alcohol added.
- Then the pieces have to be rinsed in four changes of sterile distilled water and crushed in a sterile mortar containing 5 ml of sample buffer (SB).

Sample preparation for culturing, PCR analysis and ELISA test Grape and citrus samples

Grape


Samples and tissues selected for grape (left side), citrus (right side)

Pulverized xylem tissue from dormant cuttings


Loconsole,2016;..

Citrus variegated chlorosis *Xylella fastidiosa* subsp. *pauca*

Autoaggregation and intense biofilm formation when cultured *in vitro Xylella fastidiosa* subsp. *pauca*

- A. The reference CVC strain 9a5c forms large aggregates and compact biofilm structures, while strain Fb7 remains mostly planktonic and forms very little biofilm on glass under agitation.
- B. Cellular suspensions spotted on PW agar plates and drained to the other side of the plates forming the columns also show a distinct biofilm formation between the strains after 7 days of growth, with a wax-like texture for 9a5c and a gum-like texture for Fb7.

Isolation procedure Culture defined media From citrus leaves

- Symptomatic leaves are surface-sterilized with 10% bleach for 5 min, followed by two rinses in sterile distilled water.
- Midribs and petioles are aseptically excised and placed on to sterile Petri dishes containing 1-2 ml of PBS.
- i. Sections of 2-3 mm are obtained with a sterile scalpel.
- ii. The sections are grinded and the sap is streaked on to PW or SPW medium.
- The plates are incubated at 28°C for 21 days.

EPPO

Isolation procedure Culture defined media From citrus roots and stems

- For isolation from roots and stem, after their surfacedisinfection to be performed as described above, segments of 4-12 mm in diameter and 2-3 cm long are vacuum infiltrated with succinate-citrate-phosphate buffer (1.0 g/l disodium succinate, 1.0 g/l trisodiumcitrate, 1,5 g/l K₂HPO₄, 1.0 g/l K₂HPO₄, pH 7.0) as described for grapevine.
- Then, the vacuum extract (3-4 ml per sample) is centrifuged at 4.500 g for 15 min and resuspended in 0.8 ml of buffer.
- One drop (5 µl) is, subsequently, placed on to PW, SPW, CVC1 or CVC2 media.
- The plates are incubated at 27-30°C and they are kept in plastic bags to prevent desiccation. The plates are observed for colony development at weekly intervals for a month with a binocular microscope.

EPPO

Isolation procedure Enrichment media Grape Xylem sap collection

- Thirty ml of xylem sap from 3 different European grape cultivars (*Vitis vinifera*); Cabernet Sauvignon, Pinot Noir, and Sylvaner were pooled together in a 50 ml beaker.
- Six ml of the xylem sap from the 50 ml beaker was placed into a 10 ml beaker and had the pH adjusted to 4.0.
- After pH adjustment the xylem sap was sterilized by placing it in a sterilized 0.13 mm syringe with a sterilized 0.22 µm filter cap, and discharged into a sterilized 10 ml beaker.
- Then 145 µl of "bacteria into SCP" is combined with the sterilized xylem sap and dispersed into the 96 well plate, at 200 µl per well.
- This process is repeated again for pH's 5, 6, and 7, with the 6 ml of xylem sap coming from the originally pooled xylem sap in the 50 mL beaker.
- The pH was lowered with hydrochloride acid or raised with sodium hydroxide.
- PW media with *X. fastidiosa* was used as the positive control.
- The negative control was SCP.

SCP creation 1.0g Na₂ Succinate, 1.5g K₂HPO₄, 1.0g KH₂PO₄, 1.0g Na₃ Citrate, dissolved in 1 liter of deionized water, then 2 ml of the solution was placed into test tubes which were autoclaved for 15 minutes at 140 degrees Celsius prior to use.

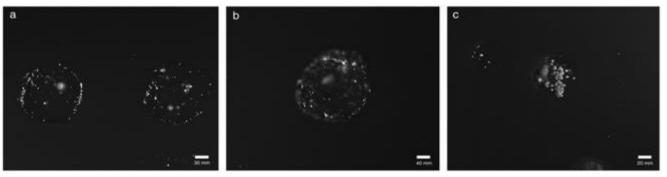
Zintzun,2006

Isolation procedure Culture defined media PD2, BCYE or PWG

- *Xylella fastidiosa* is very difficult to isolate and grow in axenic culture, even from symptomatic plants.
- The bacterium does not grow on most common culture media and requires specific media.
- PD2, BCYE or PWG are widely used for the isolation from different host species.
- The use of at least two different media is recommended, in particular when isolation is attempted for new hosts or in the case of a first detection.
- Whenever possible, isolation and achieving Koch's postulates is considered to be the 'gold standard' (EFSA, 2016b).

Isolation procedure Culture defined media BCYE and PWG

- Based on the experience of different laboratories PWG is considered the best isolation media for samples from most plants.
- Samples from Olive plants are best isolated on BCYE.
- It is very important to surface disinfect the sample to avoid growth of saprophytes because X. fastidiosa grows very slowly (the colonies can take up to 28 days to be visible) and can be readily overgrown by other microorganisms in the plates.



Isolation procedure Imprint method BCYE medium

- Stem cuttings from 58 different olive trees were cut into pieces 8 to 10 cm long, washed under tap water, surfacesterilized in 2% sodium hypochlorite for 2 min, soaked in 70% ethanol for 2 min and rinsed three times in sterile water.
- Each piece was cut in half and squeezed at one end with a plier, while the other end was gently pressed on a buffered charcoal yeast extract (BCYE) growth medium to make 2-3 imprints.
- For each sample three BCYE plates were spotted (ca. 20-30 spots per plate), incubated for 3-4 weeks at 28°C and periodically inspected for the growth of *Xylella* colonies.

Isolation procedure Imprint method BCYE medium

 Xylella fastidiosa colonies on BCYE agar medium growing in different stem-prints obtained after imprinting the fresh cut surface of the olive cuttings on the medium.

- a. Shows a low number of colonies per spot;
- b. and c. show the high number of colonies growing mostly together.

Saponari *et al.*, 2017

Isolation procedure Culture defined media Incubation period

- Petioles from grapes were cut and ground in 1ml of distilled water and dilutions (10⁻² and 10⁻³) of this suspension were made.
- Aliquots of 300µL of each dilution were inoculated by triplicate in liquid PW media.
- All cultures were incubated in the dark at 28°C under static conditions. After 15 days PW broths were tested by DAS ELISA and only those positive for *X. fastidiosa* were used in the isolation procedure
- Solid PW broths were inoculated with 100µL aliquots of liquid PW broth.
- Plates were incubated at 28°C and observed for bacterial colony growth for 12 days.
- Colonies were tested by Gram staining, catalase and oxidase.

Aguilar *et al.*,2008

Isolation procedure Interpretation of isolation results

- Colonies are usually visible after 2-3 weeks but the plates should be observed for up 6 weeks.
- The isolation is positive if bacterial colonies with growth characteristics and morphology similar to X. fastidiosa are observed within the abovementioned period on at least one medium.
- The reference culture should also have grown on the media used.
- The presumptive identification of *X. fastidiosa* colonies should be confirmed by serological or molecular tests.

Culture defined media Common and enrichment media NA, NAG, CS20, PD1,5 PD2,6 PD3, and PW

- It has long been considered that X. fastidiosa is fastidious and unable to grow on standard bacteriological media, despite reports that Nutrient Agar can support growth.
- Nutrient agar has been shown to support *X. fastidiosa* growth for grape and plum isolates.
- Bacterial colonies obtained on PD2, BCYE, CS20, are transferred to nutrient glucose agar (NGA) and PW medium or the medium used in the isolation(Schaad *et al.*,2001).
- Note that bacterial colonies obtained on PD2, BCYE, CS20, or PW medium that will not grow on NGA, or grow very grow very slowly on NGA(Schaad *et al.*,2001).

Culture defined media Common and enrichment media CS20, PD1,5 PD2,6 PD3, and PW

- A range of enrichment media such as CS20, PD1, PD2, PD3, and PW have been used successfully to culture *X. fastidiosa*.
- 1. These are rich in carbon and nitrogen sources.
- 2. Peptones, soybean, or yeast extracts are used as major nutrient sources;
- amino acids are added as supplements; all have an additional iron source (bovine hemin chloride or ferric pyrophosphate).

Common defined media Common and enrichment media

- In addition to these amino acids, *Xylella fastidiosa* appears to have a demand for glucose or organic acids, although the relative importance of each source of C is still under dispute.
- Peptones, soybean, or yeast extracts are used as major nutrient sources; amino acids are added as supplements; all have an additional iron source (bovine hemin chloride or ferric pyrophosphate).

Common defined media Common and enrichment media

- It has long been considered that *X. fastidiosa* is fastidious and unable to grow on standard bacteriological media, despite reports that Nutrient Agar can support growth (Chang *et al.*,1990; Fry *et al.*,1990).
- Nutrient agar has been shown to support X.
 fastidiosa growth for grape and plum isolates.
- Xylella fastidiosa can grow well on a simple, chemically defined medium containing mainly amino acids (especially glutamine) and salts of weak organic acids such as succinate or citrate.

Common defined media Common and enrichment media

- The bacterium also grew on media with citrate and Lglutamine as the only carbon and nitrogen sources.
- Potato starch was not essential for bacterial growth, but no growth was observed on media without hemin chloride.
- Agar inhibited bacterial growth when used as the gelling agent.

Common defined media Common and enrichment media

- Xylella fastidiosa grows exclusively in the xylem and although the xylem sap contains a diversity of compounds such as amino acids, organic acids, and inorganic nutrients, they are usually found in low concentrations, limiting bacterial growth.
- Glutamine (Gln) and asparagine (Asn) are the main amino acids in the xylem sap of plants and for this reason they have been included in several artificial media for Xf growth.

Sterilize Glutamine stock solution(4%) by membrane filtration using a 0.22 µm Millipore. Upon autoclaving L-glutamine was structurally modified into 5-oxo proline and 3-amino glutarimide (a-amino glutarimide).

Common defined media Common and enrichment media CS20, PD1, PD2, PD3, and PW

- A range of enrichment media such as CS20, PD1, PD2, PD3, and PW have been used successfully to culture *Xylella fastidiosa*.
- These are rich in carbon and nitrogen sources.
- It is important to remind that all of the ingredients have to be dissolved in the order given.
- It is recommended to use more than one single medium for the primary isolation.
- The plates are kept in plastic bags to prevent desiccation.

Common defined media Common and enrichment media CS20, BCYE, PD2, PWG, and PW

- The PW or PWG media are well suited for bacterial isolation from CVC symptomatic tissues (petioles or branches of citrus).
- On these media, small (~0.30 mm of diameter), white, and convex colonies are observed under a dissecting microscope after approximately 10 days of growth at 27°C–30°C.
- Other media like BCYE, CS20, and PD2 also support cell growth, but it may take over 20 days for colonies to be observable.

	For the isolation of	X. fastidiosa from	several host plants	including grapevine.
--	----------------------	--------------------	---------------------	----------------------

•	Deionized distilled water	1.0 L
•	Soy peptone	2.0 g
•	Bacto tryptone	4.0 g
•	Disodium succinate	1.0 g
•	Trisodium citrate	1.0 g
•	K ₂ HPO ₄	1.5 g
•	KH ₂ PO ₄	1.0 g
•	Hemin chloride stock solution (0.1% in 0.05 N NaOH)	10.0 ml
•	Bacto agar	15.0 g
•	MgSO ₄ .7H ₂ 0	1.0 g
•	Bovine serum albumin fraction V (20% w/v)*	10.0 ml

- pH 6.9
- Autoclave at 121°C for 15 min.

*Bovine serum albumin is filter sterilized and added to the rest of the medium at 50°C.

Schaad et al., 2001; EPPO, 2016

Bovine serum albumin Preparation Note

- Bovine serum albumin (BSA or "Fraction V") is a serum albumin protein derived from cows.
- Animal serum or albumin is routinely added to culture media as a source of nutrients.

Preparation Note

BSA is normally dissolved in buffers such as PBS, TBS, PBS-T, and TBS-T.

- Note 1: BSA might foam substantially when dissolved in any solvent; thus, one must wet the BSA powder first and gradually add the solvent to properly dissolve the powder. Some might even suggest to just leave the BSA powder to dissolve without shaking at r.t.p. for 10 min as it would dissolve quite easily in due time.
- What is the difference between albumin and serum albumin?
- They are both proteins made by the liver, however, and both have been used historically to evaluate nutritional status.
- Note 2: not all albumins have the same efficacy in culture media.

- PD3 (Davis *et al.*,1980)
- It is the same as PD2 but bovine serum albumin is replaced with soluble potato starch (2 g/l).
- So, all of the ingredients can be directly sterilized in autoclave.

Extraction of Starch from Yellow Skin Potato

The experimental values of extracting starch from yellow skin potato indicate the processing conditions at 3000 rpm and 15 min as optimum for the highest yield of extracted starch.

Method in details: Six hundred grams of potatoes were washed thoroughly, peeled, sliced, and chopped into small chunks. The distilled water was added to the chopped potato and the extraction process was carried out through the use of a centrifuge at different speeds (1000, 2000, 4000) rpm for different periods of time (5, 10, 15 min). Thereafter, the centrifuged samples were filtered using Whatman no. 1 and the supernatant was neglected to obtain wet starch. The wet starch was dried at room temperature for 5 h, then crushed into a fine powder and stored in sealed containers for later use(Altemimi, 2018).

• For the isolation of *X. fastidiosa* from several host plants including grapevine.

•	Deionized distilled water:	1.0 L
•	Soy peptone	2.0 g
	Bacto tryptone	2.0 g
	Hemin chloride stock solution (0.1% in 0.05 N NaOH)	15.0 ml
•	$(NH_4)_2HPO_4$	0.8 g
•	KH ₂ PO ₄	1.0 g
•	MgSO ₄ .7H ₂ O	0.4 g
•	Phenol red stock solution (0.2%)	5.0 ml
•	L-glutamine	6.0 g
•	Dextrose	1.0 g
•	L-histidine-HCl	1.0 g
•	Potato starch soluble	2.0 g
•	Bacto agar	12.0 g

- pH 6.6
- Autoclave at 121°C for 15 min.
 - 1. To prepare Hemin chloride 0.1%, dissolve 1.2 g of NaOH in 600 ml of distilled water and add 0.6 g of Hemin Cl and dissolve. Keep in a dark container.
 - 2. To prepare Phenol red 0.2%, dissolve 0.6 g of phenol red in 30 drops of 20% NaOH and bring the volume up to 300 ml with distilled water. Store in the refrigerator.

Schaad et al., 2001; EPPO, 2013

BCYE (Buffered charcoal-yeast extract agar) Used for isolation of XF from citrus, coffee and olive

•	BCYE medium (Wells <i>et al.</i> ,1981)	
•	Deionized distilled water	1 L
•	Yeast extract	10.0 g
•	Activated charcoal	2.0 g
•	L-cysteine HCl.H ₂ O	0.4 g
•	Ferric pyrophosphate (soluble)	0.25 g
•	ACES buffer (N-2-acetamido-2-aminoéthane sulfonic acid)	10.0 g
	Bacto agar	17.0 g

L-cysteine HCl and Ferric pyrophosphate are dissolved, filter sterilized (0.2 µm filter), and added to the autoclaved basal media, pH 6.9.

Due to the difficulty of dissolving and re-suspending the individual components it is recommended that ingredients are dissolved in the following order. ACES buffer is first rehydrated in 500 ml distilled water at 50 °C before addition of the yeast extract, activated charcoal and agar. Before adding the agar, the pH is adjusted to 6.9 by the addition of approximately 40 ml 1 M KOH. The medium is autoclaved and then cooled to 50 °C. Both the cysteine hydrochloride (0.4 g) and ferric pyrophosphate (0.25 g) are resuspended in 10 ml distilled water, filter sterilized and added to the cooled sterile medium. The ferric pyrophosphate needs to be heated, under agitation, at 75°C for approximately 15–20 min (EPPO, 2018b).

Schaad *et al.*,2001;EPPO,2016; Diagnostic protocols for regulated pest,2018 406

BCYE (Buffered charcoal-yeast extract agar) Used for isolation of XF from citrus, coffee and olive

- Activated charcoal or activated carbon is nontoxic in nature and is used as an adsorbent to remove broad spectrum of pollutants in air, water and soil.
- The media contains charcoal, which acts as detoxicant and activated charcoal decomposes hydrogen peroxide, a metabolic product toxic to bacteria such as *Xylella* and *Legionella* species. activated charcoal may also collect carbon dioxide and modify surface tension.
- Yeast extract acts as a rich source of vitamins, nitrogen as well as carbon.
- ACES Buffer maintains optimal pH for growth while L-cystine hydrochloride; ferric pyrophosphate stimulate growth of the bacteria.

Common defined media BCYE modified

Components	Quantity
Yeast extract	10 g
(Vetec) Activated charcoal	2.0 g
L-cysteine HCl (Sigma)*	0.4 g
(Sigma)** Ferric pyrophosphate	0.25 g
(N-2-acetamido-2-aminoéthane sulfonic acid) ACES buffer	10 g
Difco Bacto agar	17 g
Deionized distilled water	940 ml
KOH solution 1M	40 ml

- 1. Warm (\approx 50°C) the Aces buffer in 500 ml of distilled water;
- 2. Add 40 ml KOH in 1N in 440 ml distilled water;
- 3. Add the active charcoal in step-2 solution;
- 4. Pool the step 1 and 3 solutions;
- 5. Add the yeast extract to pooled solution;
- 6. Adjust the pH to 6.85;
- 7. Add agar and autoclave;
- 8. Cool down the medium at 50°C and add pre- filtered L-cysteine and Ferric pyrophosphate.
- * L-cysteine diluted in 10ml sterile water;
- ** Ferric pyrophosphate needs to be diluted in 10ml sterile water.

The modified PCYE medium was as effective as BCYE for isolation, growth, and quantification of *X. fastidiosa*

Higher frequencies of positive isolations were obtained for PCYE for the isolation of X. *fastidiosa* from citrus seedlings (36 of 38 versus 40 of 43 in BCYE) and coffee trees (35 of 39 versus 33 of 42 in trees (35 of 39 versus 33 of 42 in BCYE). The level of agreement of both media was 86.8% for citrus seedlings, 100.0% for citrus trees, and 87.2% for coffee trees.

Culture medium and positive or negative isolation	Sample of greenhouses, citrus seedings (%)	Sample of field citrus trees (%)	Sample of field coffee trees (%)
BCYE+/PCYE+	33 (86.8)	9 (100)	30 (76.9)
BCYE+/PCYE-	2 (5.3)	0	0
BCYE-/PCYE+	3 (7.9)	0	5 (12.8)
BCYE_/PCYE_	0	0	4 (10.3)

Comparing the efficacy of Buffered charcoal-yeast extract agar (BCYE) and modified medium named as phosphate buffered charcoal-yeast extract medium (PCYE). The latter, was found as effective, less expensive, and easier to prepare than BCYE.

Common defined media PW Periwinkle wilt medium

•	PW (For isolation of <i>X. fastidiosa</i> from several host plants including spp.)(Davis <i>et al.</i> ,1983)	Citrus
	Deionized distilled water	1.0
•	Soytone	4.0 g
•	Bacto Tryptone	1.0 g
•	Hemin chloride stock solution (0.1% in 0.05N of NaOH)	10.0 ml
	MgSO ₄ .7H ₂ O	0.4 g
•	K ₂ HPO ₄	1.2 g
	Phenol red stock solution (0.2%)	10.0 ml
•	L-glutamine	4.0 g
	Bovine Serum Albumin fraction V (20% w/v)	30.0 ml
•	Bacto agar	12.0 g
	pH 6.6	

Bovin Serum Albumin is filter sterilized and added to the rest of the medium at 50°C.

Schaad et al.,2001; EPPO,2013

Common defined media PWG A modified periwinkle medium (PW)

 The PWG substituted 9 gram of Gelrite for the agar used in PW and the amount of 20%(W/V) bovine serum albumin solution was reduced from 30 to 15 ml per liter.

	Deionized distilled water	1.0
	Soytone	4.0 g
•	Bacto Tryptone	1.0 g
•	Hemin chloride stock solution (0.1% in 0.05N of NaOH)	10.0 ml
•	MgSO ₄ .7H ₂ O	0.4 g
•	K ₂ HPO ₄	1.2 g
•	Phenol red stock solution (0.2%)	10.0 ml
•	L-glutamine	4.0 g
	Bovine Serum Albumin fraction V (20% w/v)	20.0 ml
•	Gelrite	9.0 g
	pH 6.6	

Bovin Serum Albumin is filter sterilized and added to the rest of the medium at 50°C.

Hill and Purcell,1995

Modified periwinkle-gelrite medium(PWG-M agar) Periwinkle wilt gelrite or periwinkle wilt GelRite

	Gelrite gellan gum (Sigma)	9.0 g
	Phytone peptone (e.g. BD BBL)	4.0 g
	Bacto tryptone (e.g. Oxoid)	1.0 g
	Phenol red stock solution (0.2%)	10 ml
	L-glutamine (Sigma)	4 g
	Hemin chloride stock solution (0.1% in 0.05 N NaOH)	10 ml
	BSA (stored in refrigerator)	3.0 g
	MgSO ₄ .7H ₂ O	1.0 g
	K ₂ HPO ₄	1.5 g
•	KH ₂ PO ₄	1.0 g

Distilled water to a final volume of a 1 liter

L-glutamine, hemin chloride stock solution and BSA are added after autoclaving. Bovine serum albumin (3 g) is dissolved in 15 ml distilled water, and 4 g L-glutamine is dissolved in 100 ml distilled water over a low heat (c. 50°C) on a hot plate at low heat. Do not boil. Hemin chloride stock is 0.1% bovine hemin chloride dissolved in 0.05 N NaOH. These three solutions are filter sterilized (0.2 µm membrane) and added to the cooled sterile basal medium.

EPPO; Diagnostic protocols for regulated pest, 2018; Janse *et al.*, 2012 412

Common defined media SPW Supplemented PW

- SPW (For stimulating the growth of *X. fastidiosa* to be isolated from sweet orange) (Hartung *et al.*, 1994).
- It is the same as PW supplemented with:

 Malt extract 	5.0 g
 Sucrose 	10.0 g
 Myo-inositol 	0.1 g
 Thiamine chloride 	0.01 g
 Pyridoxine chloride 	0.01 g
 Nicotinic acid 	0.005 g
 Glycine 	0.002 g

 CVC1 (it has been developed Citrus spp.) (Chang et al., 19 	d for the isolation of <i>X. fastidi</i>	<i>osa</i> from
 Deionized water 	55)	970 ml
 Bacto-peptone 		4.0 g
 Tryptone 		1.0 g
K ₂ HPO ₄		1.2 g
KH ₂ PO ₄		1.0 g
MgSO ₄ .7H ₂ O		0.4 g
Phenol red stock solution (0.	.2%)	10.0 ml
 Agar 		12.0 g
 After autoclaving the following 	ng filter-sterilized compounds	are added:
 Glutamine stock solution (8%) 	/0)	50 ml
 Bovine serum albumin stock 	solution Frac V (10%)	60 ml
 pH 6.5 		414

EPPO,2013

- CVC2 (Chang *et al.*,1993)
- It is the same as CVC1 plus 10.0 ml of hemin chloride stock solution (0.1%) to be added before autoclaving.

Culture media XfD-series media XFD1-XFD9, XfD5-c, XfD5-aa and XfD2-hc

- A simple defined solid medium containing citrate and succinate, three amino acids (L-glutamine, L-asparagine, and L-cysteine), hemin chloride, potato starch, gellan gum (GelRite), and mineral salts supported the growth of grape strains of *Xylella fastidiosa*, the bacterial pathogen that causes Pierce's disease of grape.
- All XfD media defined here had phenol red (10 mL, 0.2% in H₂O), K₂HPO₄.3H₂O (1.5 g), KH₂PO₄ (1.0 g), and MgSO₄.7H₂O (0.5 g).
- XfD media were prepared with deionized water (final volume brought to 1 L) and autoclaved.
- In preliminary tests we found no difference between using deionized and distilled water.

Culture media XfD-series media XFD1-XFD9, XfD5-c, XfD5-aa and XfD2-hc

		XfD No.										
	1	2	3	4	5	6	7	8	9	2-hc	5-c	5-aa
Amino acids												
L-glutamine (anhydrous) (g)	3.0	3.0	3.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
L-asparagine (anhydrous) (g)	1.0	1.0	1.0							1.0		
L-cysteine (anhydrous) (g)	0.5	0.5	0.5							0.5		
Carbon source												
Trisodium citrate (g)	1.5	1.5	3.0	1.5	3.0	3.0	3.0	3.0	3.0	1.5		3.0
Disodium succinate (g)	1.5	1.5		1.5						1.5		
Others												
Hemin chloride (0.1% in 0.05% NaOH) (mL)	10	10	10	10	10		10				10	10
Iron pyrophosphate (g)									0.25			
Potato starch (g)	3.0	3.0	3.0	3.0	3.0	3.0			3.0	3.0	3.0	3.0
Gelling agent												
GelRite (g)		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Agar (g)	15.0											
X. fastidiosa growth ^a	+	++	+	+	+	_	+	_	_	_	_	_

 $a^{a} + + =$ single colonies visible within 2 weeks; + = single or confluent colonies observed within 4 weeks; - = no visible growth within 4 weeks.

Note: All XfD media suggested here had phenol red. New *X. fastidiosa* defined media(XfD) and respective reagents used (g/L). We used modified PD3 and PWG by the addition of phenol red dye to the media. XfD2 was the best of our defined media for *X. fastidiosa* growth. *X. fastidiosa* multiplied slowly on XfD1 (3-4 weeks), and we could not observe individual colonies on it without a microscope.

Almeida et al.,2004

Salient characteristics Colony morphology Colony and cell size and shapes

- The bacterium grows slowly on selective medium to form small colonies that appear white to yellow.
- Gram-negative, rod-shaped bacterium with dimensions of 0.25 to 0.35 µm in radius and 0.9 to 3.5 µm in length.
- Cell replication is by binary fission.
- The bacterial cells often possess a distinctive rippled (undulating) cell wall, composed of three layers.
- The wall consists of an outer, an inner (each comprised of 3-layered unit membrane structure), and a middle peptidoglycan layer.

Colonial characteristics Grapevine isolates On PD2, PD3, CS20 and BCYE media

- Colony morphology and microscopical observation grapevine after 10 days of incubation at 28°C on PD2, PD3, CS20 or BCYE media.
- *X. fastidiosa* yields colonies 0.5-2.0 mm in diameter, circular, with entire margins and convex elevation.
- Sometimes colonies are produced that are also circular with undulate margins with an umbonate or flat elevation.
 - 1. Colonies on CS20 were opalescent, creamy in color, circular in form and had entire margins.
 - 2. Colonies on PD2 were opalescent, bronze colored, circular in form, convex and exhibited twitching motility.

EPPO,2004

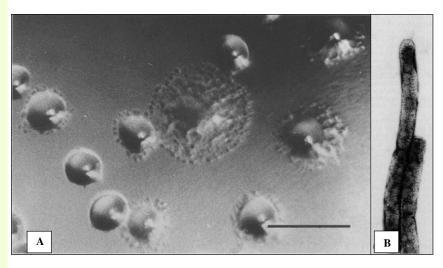
Colonial characteristics Citrus isolates On SPW, PW, CVC1 and CVC2 media

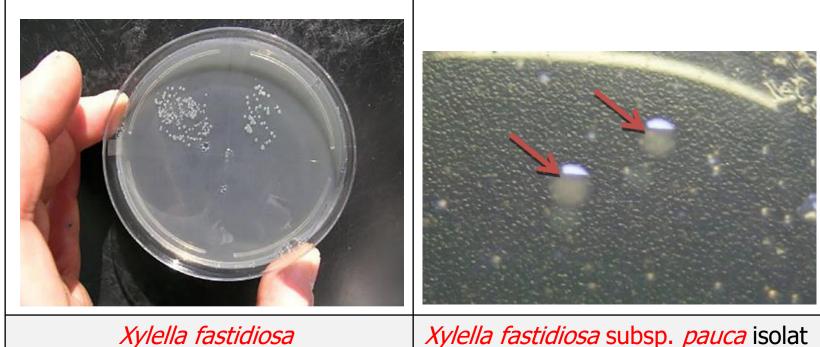
- On SPW medium, isolated colonies are visible within 7 days after streaking. After 21 days of incubation at 27°C, their diameter is 0.35 mm.
- On PW medium, colonies appear 10-14 days after isolation.
- On CVC1 and CVC2 media, colonies develop 25-30 days after isolation.

Xf was first isolated from grape and was successfully cultured on a selective medium called Pierce's Disease 2 (PD2) (Davis *et al.*,1980). Other derivative media also supported growth of Xf (PD3), sugarcane (SC-20) and periwinkle wilt (PW) media were developed by Davis *et al.*,1981.

EPPO,2004; Johnson et al., 2021

Colonial characteristics On PW and PWS media

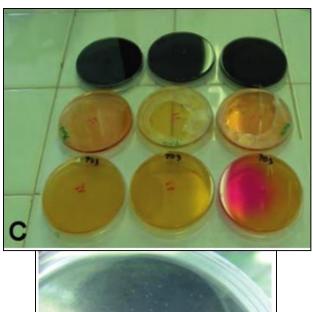

- Colonies of *X. fastidiosa* isolated from symptomatic grapevine plants.
- Both PW and PWS media were adequate for primary isolations.
- In subsequent attempts of primary isolation, PW was preferred because SPW showed higher rates of contamination than PW.


Colonies of *X. fastidiosa* on periwinkle wilt agar medium PW.

Colonial characteristics On PW agar

- A. Colonies of *Xylella fastidiosa* subspecies *multiplex* (Xfm, causal of phony peach disease, PPD) bacterium on PW agar as seen by relected light through a dissecting microscope (bar = 0.05 mm) (Davis *et al.*,1981).
- B. Negatively stained bacteria isolated from peach infected with Xfm.
- The rods are 0.25 to 0.27 by 1.2 to 2.4 µm in size and have furrowed cell walls (magnification × 21,000) (from Wells *et al.*,1987).

Colonial characteristics On modified periwinkle wilt medium (PWG-M agar)


Xylella fastidiosa subsp. *fastidiosa* isolated from *Coffea canephora* on modified PWG (size < 2 mm after 3 weeks). *Xylella fastidiosa* subsp. *pauca* isolat ed from *Coffea arabica* on modified PWG (size <2 mm after 3 weeks) (the background is a sheet of black paper below the plate).

Colonial characteristics On modified periwinkle wilt medium (PWG-M agar without phenol red)

- Xf strains were cultured at 28°C on modified periwinkle wilt modified medium (PWG-M agar without phenol red) for up to seven days.
- Then, the cultures were transferred to a new plate containing PWG-Magar or B-CYE medium and incubated for up to seven days at 28°C.
- When required, for liquid cultures, Xf strains were incubated at 28°C under 160 rpm agitation in PD2 broth.

Colonial characteristics On LMG, PWS and PD3 media

- C. *Xylella* selective media:
- Top row: LMG activated carbon (black) medium;
- Central row: PWG medium with gelrite;
- Lower row: PD3 selective medium (Davis *et al.*,1981).
- D. LMG charcoal medium.
- Pink colour indicates presence of contaminants.

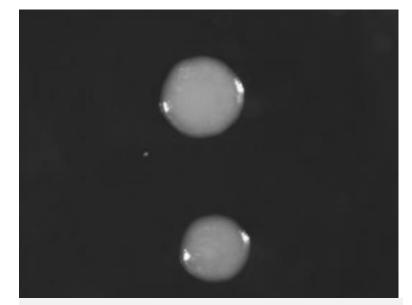
Colonial characteristics

On PD2 medium, a selective medium called Pierce's Disease 2 (PD2) (Davis *et al.*,1980)

- The colonies of *Xylella fastidiosa* subsp. *fastidiosa* cultured at 28°C on solid PD2 medium are opaque. Size < 2 mm after 3 weeks.
- When required, PD2 medium was supplemented with 10 µg/ml gentamicin (Gm) and 10 µg/ml chloramphenicol (Cm).

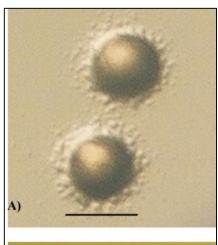
EPPO,2018;Shi and lin,2018

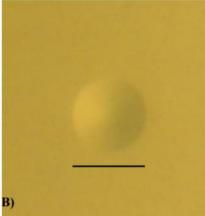
Colonial characteristics On buffered charcoal-yeast extract medium (BCYE)


- Two colony types can be observed:
- Smooth and rough, both are circular and opalescent.
- When grown on BCYE1 medium, colonies are small, 0.6 mm in diameter after 10 days at 27°C, expanding to 1.5 mm after 30 days.
- On this medium, rough colonies exhibit green or red margins when viewed under reflected light.

Collection strain of *Xylella fastidiosa* subsp. *fastidiosa* ATCC 35879 on BCYE (size < 2 mm after 3 weeks).

Colonial characteristics On buffered charcoal-yeast extract medium (BCYE)

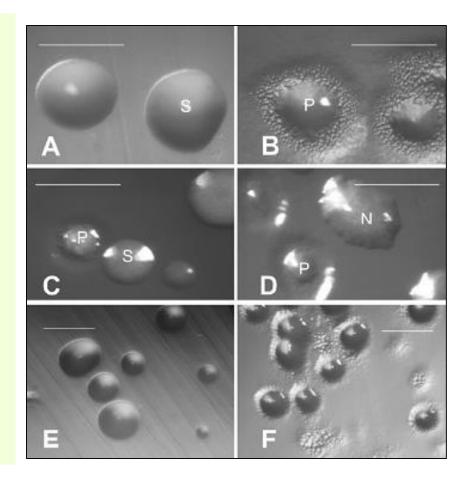

Purified colonies of an isolate X. fastidiosa subsp. pauca Salento-1, grown on BCYE agar for 20 d at 28°C were slightly convex, white, opales-cent, mucoid when touched with a loop, circular with entire margins, with a diameter of about 1.2-1.5 mm and a smooth surface.



Colonies of *Xylella fastidiosa* subsp. *pauca* Salen-to-1, after incubation at 28°C for 20 d on BCYE agar plates.

Colonial characteristics On PD2, and CS20 agar media Leaf scorch of blueberry(BLSB)

- Two major colony morphotypes: smooth and "pit"-like Xylella fastidiosa colonies on: PD2, and CS20 agar media.
- A. Colonies on PD2 resembled the pit-like colonies of A-type strains grown on PWG agar media.
- B. The G-genotype strains were consistently (>99%) associated with smooth colony morphotypes.



Nissen *et al.*,2010; Chen *et al.*,2007

Colonial characteristics Almond leaf scorch (ALS) Two major colony morphotypes: smooth and pit-like

- Two genotypically distinct types of *X. fastidiosa* strains, G-type and A-type, coexist simultaneously in the same infected almond orchard.
- A, Smooth type;
- B, "pit"-like type;
- C, "pit"-like and smooth type;
- D, "pit"-like and non-"pit"-like
 A-type; and
- E and F, triple-cloned colonies from a single almond petiole (E, smooth G-type; and
- F, "pit"-like A-type).

Chen *et al.*,2005

Diagnostics methods

- Genetic diversity were found amongst *X. fastidiosa* strains.
- The differences between pathogenic populations can be observed using:
- Traditional methods,
- Monoclonal antibodies,
- Random amplified polymorphic DNA (RAPD),
- Arbitrary-primed (AP-PCR),
- Restriction fragment lenght polymorphism (RFLP),
- Variable number of tandem repeated (VNTR),
- Repetitive sequence based-PCR (rep-PCR),
- PCR-RFLP,
- Intergenic spacer (ITS) 16S-23S rDNA sequencing,
- Clamped homogeneous electric field CHEF,
- Plasmid profile.

Summary of detection methods for *Xylella fastidiosa*

Assay	Number of samples comfortably accommodated	Sensitivity ^Y (number of bacterial cells)	Cost	Labor
Culture	10-100s	1000	Low	Low
ELISA	100-1000s	100,000	Med	Med
PCR	100s	100	High	Med
IC-PCR ^Z	100s	<100	High	High

Diagnostics methods Salient characteristics *Xylella fastidiosa*

- Single, straight rods, 0.25-0.35×0.9–3.5 µm, that can form long filamentous strands under some cultural conditions.
- Gram negative.
- Nonmotile, lacking flagella.
- Endospores not produced.
- Aerobic.
- Colonies are non-pigmented: cream to white.
- Two colonies types occur: umbonate and rough with finely undulate margins, or convex, smooth and entire (Bradbury, 1991).
- Indole production, denitrification negative.
- Oxidase negative and catalase positive.
- Optimum temperature for growth, 26-28°C; optimum pH for growth, 6.5-6.9. Nutritionally fastidious.
- Found mainly in the xylem of plant tissue.
- The mol% GC of the DNA is: 51.0-52.4 (Tm); 52-53.1 (Bd).

Diagnostics methods Some more biochemical characteristics *Xylella fastidiosa*

- Gelatin is hydrolyzed and gelatinase is produced.
- Many strains produce β-lactamase. Beta-lactamase was detected with penicillin-starch paper strips.
- β-galactosidase, coagulase, lipase, amylase, and phosphatase negative.
- Indole and H₂S are not produced.

Diagnostics methods Key biochemical and physiological characteristics of *X. fastidiosa*

Catalase	+			
Oxidase reaction	-			
Gelatin liquefaction	+			
Indole production	-			
H_2S production	-			
DL-lactate	+			
Glucose fermentation	-			
Temperature optimum	26 to 28°C			
pH optimum (<i>X. fastidiosa</i> is very sensitive to variations in pH)	6.5 to 6.9			

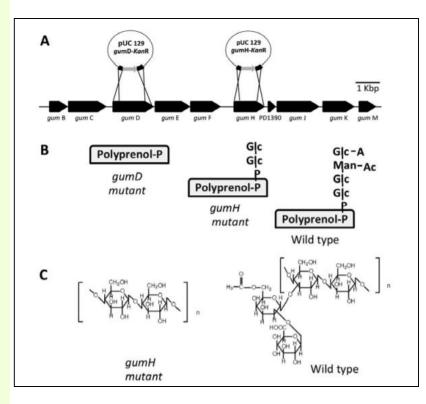
Diagnostic protocols for regulated pest,2018

Beta-lactamase test

1. Preparation of penicillin-starch paper strips

- Beta-Lactamase Test is a means of detecting the enzyme betalactamase, which confers penicillin resistance to various bacterial organisms by cleaving the beta-lactam ring of penicillins and cephalosporin antibiotics.
- Preparation of penicillin-starch paper strips:
- Strips of Whatman no. 3 filter paper (approximately 5 by 1 cm) are immersed in a solution of 0.2% soluble starch (BBL) and 1% penicillin (potassium penicillin G for injection).
- The strips are then allowed to dry at room temperature for approximately 2 h on a perforated metal rack.
- Dried strips are then stored at -20°C, which ensures their stability for at least 1 year.

Beta-lactamase test 2. Performig the Beta-lactamase test

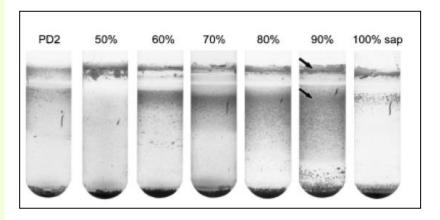

- To perform the test, a strip is removed from the freezer and placed in a disposable plastic petri dish.
- The strip is thoroughly moistened with either Gram or Lugol iodine, producing a deep purple color, and excess liquid is then poured off.
- Approximately 10 colonies of the primary growth of the test organism on agar media are then applied to the center of the moistened strip by rubbing it with an inoculating loop in a circular fashion, describing a circle approximately 5 mm in diameter.
- 1. If penicillinase is produced, the deep purple color of the strip becomes white within 1 min in the area where the organisms were applied.
- 2. If penicillinase is not produced, the strip remains purple or becomes slightly yellow at the immediate site of inoculation.

Mechanism of disease development The fastidian gum(EPS)

- The fastidian gum(EPS) may be linked directly to the pathogenicity of this bacterium.
- Terminal fimbriae (also called type IV pili) are important for biofilm formation.
- In addition, although the bacterium lacks flagella for motility, terminal fimbriae aid in a type of incremental movement called "twitching motility" which enables bacterial cells to move against the xylem stream (transpirational flow in xylem).
- Expression levels of the X. fastidiosa gum genes gumC, gumD, and gumJ are affected by cell density, suggesting that X. fastidiosa EPS production could be regulated by a quorum-sensing mechanism.

Mechanism of disease development The fastidian gum(EPS)

- A. Genetic map of the *Xylella fastidiosa* gum operon; plasmids and targeted genes for disruption are indicated.
- B. Repeating units in gum polymer expected from *gum*D and *gum*H mutants compared with the wild type, as added to the polyprenol.
- c. Putative exopolysaccharide structure expected for the *gum*H mutant compared with the wild type; *gum*D not shown because no additional residues are expected to be added to polyprenol.


Killiny *et al.*,2013

The fastidian gum(EPS) Biofilm assessment 1. On glass slides

- Slides were affixed to the inner surface of the wide-mouthed glass jars (cat. # 02-911-420; Fisher Scientific) with polydimethylsiloxane (Sylgard 184).
- Following sterilization by autoclaving, 20 mL of the PD2 and/or sap media were added to the jars, followed by seeding with Xf to an initial OD₆₀₀ nm of 0.05, and incubation at 28°C with agitation at 100 r.p.m. for up to 10 days.
- Subsequently, the glass slides were removed, cleaned of extraneous cells on the backside and the biofilms imaged by scanning with an Epson Perfection 4870 Photo scanner at 600 dpi resolution and managed with ADOBE PHOTOSHOP.
- For scanning electron microscopy (SEM), the same set-up was used with the addition of coverslips attached to the glass slides with a small quantity of polydimethylsiloxane. Once removed from the jar and then from the glass slides, coverslips were prepared for SEM according to Meng *et al.*, 2005.

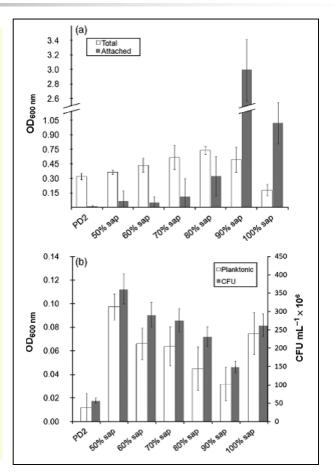
The fastidian gum(EPS) Biofilm assessment On glass slides(continued)

- Formation of biofilms on glass surfaces by *Xylella fastidiosa*.
- Cells were cultured at 28 1C and 200 r.p.m. and photographs taken after 7 days.
- Arrows indicate the biofilm formed at the air-liquid interface and submerged regions.
- Highest growth and more robust biofilms are attained at high sap: PD2 ratios.

The fastidian gum(EPS) Biofilm assessment 2. In 96-well polystyrene culture plates

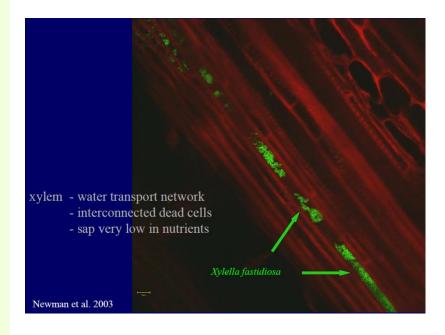
- Biofilm development was also assessed in 96-well polystyrene culture plates. Xf cells suspensions were made to an initial OD₆₀₀ nm of 0.1 in various PD2:sap mixtures and 150 mL were added to wells of 96-well polystyrene plates (Falcon 35-1177; Becton Dickinson). Cultures were maintained for 5 days at 28 1C with agitation at 200 r.p.m.
- A Synergy 2 plate reader (Biotek) was used to quantify the OD₆₀₀ nm in each well, and this was considered the 'total' measurement.
- One hundred microliters of the supernatant of each well was transferred to wells in new plates and once again absorbance measured. This was considered the 'planktonic cell' measurement.
- Original plates were then rinsed three times with water using a plate washer (Biotek). This step removes planktonic cells and any cells loosely attached or deposited in the bottom of the well.

The fastidian gum(EPS) Biofilm assessment

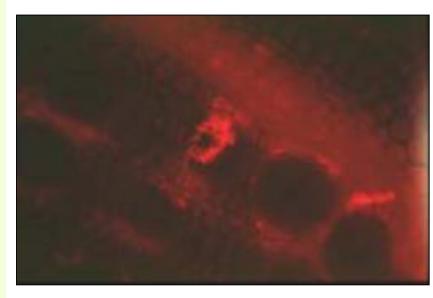

In 96-well polystyrene culture plates(continued)

- To determine attached cells, 200 mL of aqueous 0.1% crystal violet was added to each well and plates kept at room temperature (c. 23°C) for 20 min.
- Plates were washed three times as before with water, followed by the addition of 200 mL of 6:4 acetone: ethanol and agitated for 5 min.
- The acetone: ethanol-dye solution was measured at OD₆₀₀ nm.
- This was considered the 'attached cell' measurement.
- A total of 44 samples for each media condition were used.
- Ten microliters from the 'planktonic' suspensions were serial diluted and 10 mL of each dilution dropped onto PW agar plates without spreading to determine the number of CFU.
- Independent dilutions were prepared with samples from three 96-well plates and the number of colonies for each condition was averaged.

The fastidian gum(EPS) Biofilm assessment


In 96-well polystyrene culture plates(continued)

- Effect of xylem sap on growth and biofilm formation on polystyrene surfaces by *Xylella fastidiosa*.
- A. After 4 days of growth at 281C and 200r.p.m. in 96well plates, OD of total and attached cells were measured.
- DD of planktonic cells were also measured and numbers of CFU counted.


Diagnostics methods Green fluorescent cell staining

- Longitudinal sections of infected citrus petioles.
- Plant xylem is depicted in red or blue.
- X. fastidiosa cells are green.
- xylem water transport network.
- interconnected dead cells.
- sap very low in nutrients.

Diagnostics methods Immunostaining

- This section of an inoculated young grape stem cuts across three water-conducting vessels.
- One of the three contains *Xylella fastidiosa* cells which are seen as the red fluorescent ring revealed by immunostaining with the Texas red-anti-rabbit antibody conjugate.

Serological diagnosis Serological methods vs. molecular tests

- In general, the accuracy of the results obtained in each laboratory for the ELISA tests was lower than the accuracy values obtained using the molecular tests.
- The majority of the deviations were recorded for the samples containing the lowest bacterial concentration (5x10⁴ CFU/ml), with several replicates testing negative, i.e. producing negative deviations.
- However, excluding from the analysis these replicates and considering the results obtained for the *Xylella* contaminated samples containing 5x10^6 CFU/ml and 5x10^5 CFU/ml and the *Xylella*-free samples, all laboratories were proficient with an accuracy of 100%.

Serological diagnosis

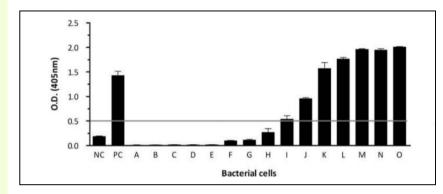
Indirect double antibody sandwich enzymelinked immunosorbent assay (DAS-ELISA) test

- Antiserum preparation:
- Polyclonal antiserum Female New Zealand white rabbits weighing 2kg were endovenously inoculated with standardized bacterial suspension at 1×10⁶ X. fastidiosa cells/mL in PBS, and this procedure was repeated three times at 14 day intervals.
- Ten days after the last injection, the blood was collected through cardiac puncture and the serum titer and specificity were determined by indirect enzymelinked immunosorbent assay (ELISA) (Clark *et al.*,1986) and pre immune serum was used as a negative control.

Diagnostics methods Double antibody sandwich (DAS)-ELISA test Specificity of indirect ELISA assay

- Specificity of antiserum:
- The reactivity of the *X. fastidiosa* antiserum was tested by indirect ELISA, and the average of the results was expressed as the optical density at 405 nm as a function of the concentration of antigens.
- The antiserum had a robust reactivity and its detection ranged from 10⁶ to 10⁴ bacterial cells, and detected *X. fastidiosa* with similar magnitude in sample plant extracts.

- All the collected samples from olive, citrus and grapevine trees were tested by ELISA, using specific polyclonal antibodies to *X. fastidiosa* (Loewe Biochemica, Germany), according to the manufacturer's instructions.
- In the presence of PBS-buffer, extracts were obtained from leaf petioles and midveins, using mortars and pestles.
- Absorbance was measured after 30, 60, 120 and 180 minutes (min) with a microplate reader (ELX800, BioTek) at 405 nm.


Diagnostics methods Double antibody sandwich (DAS)-ELISA test Specificity of indirect ELISA assay

Specificity of antiserum:

- These polyclonal antibodies are highly specific for X. fastidiosa, since it has no cross-reactivity in ELISA with other endophytic citrus bacteria such as Methylobacterium mesophilicum, Methylobacterium extorquens, Curtobacterium flaccumfaciens, Bacillus sp. and Pantoea agglomerans.
- The cross-reactivity can interfere in the specificity, making the diagnosis useless, due to false positive results even in the absence of the X. fastidiosa.

Diagnostics methods Double antibody sandwich (DAS)-ELISA test Specificity of indirect ELISA assay

- Detection limit of CVC by Indirect ELISA.
- (NC) Negative control (without X. fastidiosa); (PC) positive control (1×10⁶ X. fastidiosa cells in PW medium); 1 × 10⁶ bacterial cells of:
- (A) Methylobacterium mesophilicum,
- (B) Methylobacterium extorquens,
- (C) Curtobacterium flaccumfaciens,
- (D) Bacillus sp.,
- (E) Pantoea agglomerans;
- (lanes F to O) 10-fold serial dilutions of *X. fastidiosa* ranging from 10¹⁰ to 10¹ cells.
- Therefore, the ELISA sensitivity ranges between 10⁴ and 10⁶ bacterial cells, similar to PCR sensitivity that can amplify around 10⁶ cells per sample.

- Kits for serological detection of *X. fastidiosa* can be supplied by different companies.
- The ELISA kits from Agritest and Loewe have been validated for olives, oleander, almond, citrus, oak, grape and other species (i.e. weeds) (Loconsole *et al.*,2014).

Diagnostics methods Double antibody sandwich (DAS)-ELISA test *Xylella fastidiosa* (Xfas) ELISA Kit

- Contents of Kit:
- ##96 test format##
- 1. Antibody (IgG): 0.1 ml
- 2. Antibody-AP-conjugate: 0.1 ml
- 3. Positive Control: 10 tests
- 4. Negative Control: 10 tests
- 5. Coating Buffer: 1 liter
- 6. Wash Buffer: 1 x 5 liter
- 7. Conjugate/Sample Buffer: 1 x 1 liter
- 8. Substrate Buffer (5x): 1 x 25 ml
- 9. Substrate Tablets: 4 x 5 mg
- 10. Tween 20: 10 ml
- 11. High-binding ELISA plates: 12x8 wells
- 12. Sealing Cover: 1
- Storage:
- Our ELISA reagents are standardized for use at a dilution of 1:200 and a test volume of 200 µl/well. The products must be kept refrigerated (ca. 4°C) upon receipt. Once opened, we recommend using the reagents within 5 months.

Creative Diagnostics 2024

Qualitative results:

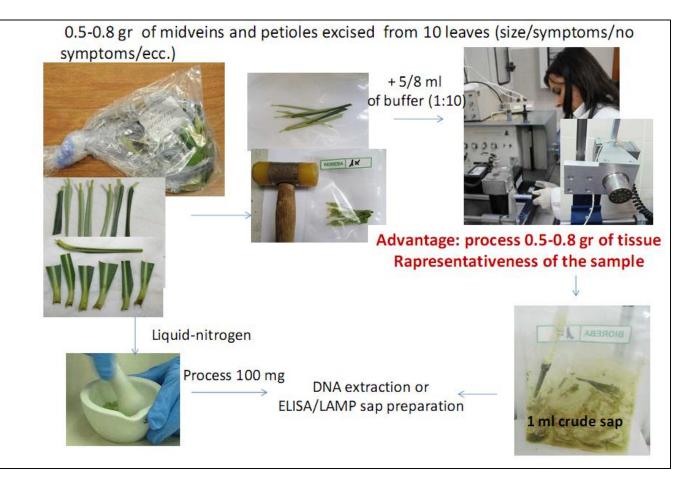
- The ELISA test worked properly: the positive control of the kit reacted positively, whereas no color change was observed with the negative control of the kit.
- Loconsole *et al.*, 2014 performed several laboratory tests, in which the reactivity of different commercially available ELISA kits was compared, and showed that a kit from Loewe (Biochemica GmbH, Germany) detected a higher number of known positive samples with reactions occurring within 2 hours, following manufacturer's instructions and using the controls supplied with the kit
- Thus, this kit was used for this preliminary survey on the presence of *X. fastidiosa* in Morocco.

- Qualitative results (ELISA absorbance values at 405 nm wavelength):
- A sample is assessed as "positive" when the OD₄₀₅ value is at least three times higher than the OD₄₀₅ value of the negative control, conversely it is categorized as negative when the value is below this threshold.
- A test was considered positive if the specified test well emitted a blue color and generated an absorbance reading >0.3000 using 620 nm as the measurement wavelength on the SPECTRAFlour ELISA Reader.

 Performance values recovered in each laboratories for the ELISA test performed using the kits Agritest and Loewe. Results of the homogeneity and stability tests for the ELISA tests. OD 405 values are indicated for each replicate.

HOMOGENEITY TEST										
		AGRITEST				LOEWE				
		5X 10^6 cells/ml	5X 10^5 cells/ml	5X 10^4cells/ml	healthy	5X 10^6 cells/ml	5X 10^5 cells/ml	5X 10^4cells/ml	healthy	
Replicate 1	repetition 1	2,525	1,722	0,197	0,037	2,510	1,449	0,148	0,040	
Replicate 2		2,522	1,830	0,170	0,037	2,555	1,443	0,174	0,037	
Replicate 3		2,649	1,777	0,168	0,013	2,488	1,391	0,157	0,010	
Replicate 1	repetition 2	2,491	1,745	0,197	0,040	2,471	1,345	0,141	0,033	
Replicate 2		2,485	1,835	0,169	0,028	2,533	1,447	0,174	0,019	
Replicate 3		2,524	1,903	0,160	0,017	2,476	1,411	0,153	0,011	
Quantitative homogeneity		yes	yes	no	yes	yes	yes	no	yes	
Qualitative homogeneity		yes	yes	yes	yes	yes	yes	yes	yes	
STABILITY TEST										
		AGRITEST				LOEWE				
		5X 10^6 cells/ml	5X 10^5 cells/ml	5X 10^4cells/ml	healthy	5X 10^6 cells/ml	5X 10^5 cells/ml	5X 10^4cells/ml	healthy	
Replicate 1		2,733	1,557	0,111	0,045	2,730	1,602	0,130	0,045	
Replicate 2	repetition 1	2,762	1,415	0,105	0,040	2,720	1,450	0,101	0,037	
Replicate 3		2,796	1,643	0,099	0,020	2,747	1,629	0,123	0,025	
Replicate 1	repetition 2	2,728	1,552	0,108	0,047	2,740	1,603	0,127	0,042	
Replicate 2		2,768	1,423	0,105	0,036	2,715	1,445	0,103	0,030	
Replicate 3		2,805	1,637	0,104	0,023	2,735	1,637	0,128	0,021	
Quantitative stability		no	no	no	yes	no	no	no	yes	
Qualitative stability		yes	yes	yes	yes	yes	yes	yes	yes	

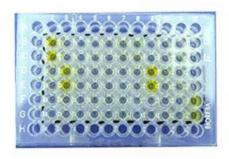
Diagnostics methods 1. Plant sample preparation for ELISA test


- Tissue sources for ELISA tests can be leaves (including petioles), twigs or canes.
- Samples can be prepared by macerating the leaves in extraction buffer (1:10, w:v) using a mortar and pestle or tissue homogenizer (e.g. Polytron, Homex, etc.).
- Samples can be frozen in liquid nitrogen for homogenization.
- For twigs and canes, the bark is removed, and pieces of stem can be cut and minced with a razor blade and ground as described above.
- Comment: It should be noted that for some hosts species (e.g. *Quercus, Platanus*) or some samples (due to the microbiota) high background signals resulting in false-positive reactions (not confirmed with molecular tests) can occur.
- In some cases, surface sterilization of the samples may help to overcome this problem.

Diagnostics methods Plant sample preparation for ELISA test

- Leaf peduncles and midribs excised from mature leaves are the most suitable tissues for *X. fastidiosa* detection in perennial crops.
- For annual herbaceous plants stem and leaf peduncles and veins from basal leaves should be used.
- For each sample, at least 0.5-0.8 gr of tissue are recovered from 5-10 leaves (according to the leaf size and consistency) and used for DNA extraction or ELISA sap preparation.
- Samples should be inspected for symptoms and if present symptomatic leaves (showing leaf scorching and necrosis), selected and processed, removing the necrotic and dead tissue.

Detection procedure Plant sample preparation for ELISA test



Loconsole,2016;..

Detection procedure Plant sample preparation for ELISA test ELISA test

ELISA sap leaf tissues + extraction buffer (1:10)

Preliminary tests

- reactivity of different commercially available ELISA kits compared
- kit from LOEWE (Biochemica GmbH, Germany) detected a higher number of known positive samples

KIT LOEWE was used throughout the validation and monitoring program in 2013-2014

Absorbance measured after 30, 60, 120 and 180 min with a microplate reader at 405 nm.

REACTION POSITIVE = after 120 min, the absorbance 3 times greater than the mean absorbance of healthy control samples.

Diagnostics methods ELISA test

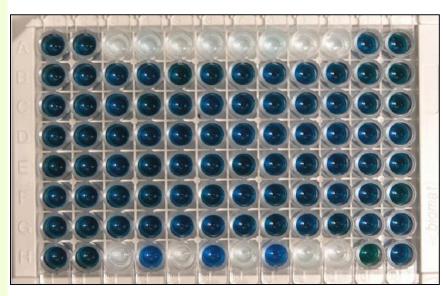
2. Colony suspensions were also tested by DAS ELISA

- Petioles from grapes were cut and ground in 1ml of distilled water and dilutions (10⁻² and 10⁻³) of this suspension were made.
- Aliquots of 300µl of each dilution were inoculated by triplicate in liquid PW media.
- All cultures were incubated in the dark at 28°C under static conditions.
- After 15 days PW broths were tested by DAS ELISA and only those positive for *X. fastidiosa* were used in the isolation procedure.
- Solid PW broths were inoculated with 100µl aliquots of liquid PW broth.
- Plates were incubated at 28°C and observed for bacterial colony growth for 12 days.
- Colony suspensions were also tested by DAS ELISA.

Aguilar *et al*.,2008

Diagnostics methods ELISA test

Colony suspensions were also tested by DAS ELISA


- For each isolate two cell suspensions were prepared for species confirmation with double antibody sandwich- enzyme linked immunosorbant assay (DAS-ELISA).
- Using a 3mm inoculating loop, two clumps of bacteria were removed from the PD3-G⁺ media plates and thoroughly vortexed in a 1.5 ml micro tube to suspend cultures in 1 ml of General Extraction Buffer as provided in the Agdia DAS-ELISA kit.
- A test was considered positive if the specified test well emitted a blue color and generated an absorbance reading >0.3000 using 620 nm.

A positive reaction was determined to be greater than the mean of the absorbance at 490 nm of the negative controls plus three times the standard deviation (Aguilar *et al.*,2008).

Diagnostics methods ELISA test

Colony suspensions were also tested by DAS ELISA

- DAS-ELISA of isolated cultures.
- Photograph depicts results of DAS-ELISA assay used to identify suspected cultures as *X. fastidiosa*.
- Blue color indicates a positive test where clear wells indicate a negative test.
- All clear wells in this photograph correspond to the negative controls.

Diagnostics methods Principle of the test

- 1. During the first step of the assay the surface of a microtiter plate is coated with the antigen-specific coating-antibody (IgG).
- 2. When an antigen-containing sample is added during the second step, the antigen binds to the immobilized IgG, forming an antibodyantigen complex.
- 3. This complex reacts with the enzyme-labelled antibody-AP-conjugate during the third step by forming a double-antibody sandwich.
- 4. During the fourth step the alkaline phosphatase (AP) reacts with the substrate 4- nitrophenylphosphate (PNP) in an enzymatic reaction, resulting in yellow coloured 4-nitrophenol as product.
- This colour development can be evaluated visually or measured in a spectrophotometer at 405 nm after 1 and 2 hours.

The products must be kept refrigerated (ca. 4°C) upon receipt. Once opened, we recommend using the reagents within 5 months.

CD, Cat. No: DEIAPB5

Diagnostics methods The procedure for the ELISA test

- The following steps must be followed:
- 1. Coat the plate:
- Dilute the IgG (anti-Xf.-IgG) or capture antibody/coating antibody 1:200 (Loewe)/1:500 (Agritest) in coating buffer in 1.5-2.0 mL microvials e.g. Eppendorf tube (mix the prepared capture antibody solution thoroughly and use immediately) and load 100 or 200 µl to each well of the microtiter plate.
- Prepare a humid box by lining an airtight container with a wet paper towel.
 Keeping test wells in a humid box during incubation will help prevent samples from evaporating.
- Cover the plate tightly and place it in a humid box.
- Incubate the plate at 37°C for 4 h.
- 2. Washing step:
- Remove the sap from the wells (use a quick flipping motion to empty the wells into a sink or waste container) and wash 4 times the plates using the washing buffer, remove any liquid by blotting the plate on paper towels.

Note: All antibodies and enzyme conjugates should be prepared in a container made of a material such as polyethylene or glass that does not readily bind antibodies. Do not use polystyrene, polypropylene or polycarbonate.

Diagnostics methods The procedure for the ELISA test

- 3. Plant sap preparation and Antigen incubation:
- Homogenize the samples in extraction buffer 1:10 (w/v): weigh at least 0.5 g of leaf petioles and basal portion of the leaves, cut in small pieces using a razor blade (while processing the samples, sterilize the blade between samples).
- Transfer the plant tissue into the extraction bags and add 5 ml of extraction buffer; crush with a hammer and grind by a semi-automated homogenizer (i.e. Homex).
- Transfer 1 ml of sap into a microcentrifuge tube that store at 4°C until use, allowing plant debris precipitation.
- Load 100 or 200 μ l of plant extract to each well of the microtiter plate.
- Include two wells per plate for both the positive and negative controls (see next slide).
- Cover the plate and incubate at 4°C overnight in a humid box.

DETECTION OF Xylella fastidiosa,2015;...

Diagnostics methods The procedure for the ELISA test Positive and negative controls

- Positive and negative controls should be prepared as described below:
- Positive controls:
- Obtain a 48-h culture of a virulent strain of the target bacterium on Nutrient Agar medium or another suitable general medium and suspend in PBS buffer to obtain a cell density of approximately 10⁸ cells ml⁻¹
- This is usually obtained by a faintly turbid suspension equivalent to an optical density of 0.1 at 600 nm.
- Negative controls:
- Healthy plant extract (for detection) or a suspension of the heterologous bacterial species (for identification) should be used as negative controls. The healthy plant should be the same species and preferably the same variety and the same plant part at the same growth stage for better comparison with the samples to analyse.
- Aliquots/extracts of the same host plant which previously tested negative for the target bacterium can be used as negative controls.

Diagnostics methods The procedure for the ELISA test Continued...

- 4. Washing step:
- Repeat step 2.
- 5. Add the detection antibody (always make enzyme conjugate solution within 10 minutes before use):
- Dilute enzyme-conjugated antibodies (anti-Xf.-AP conjugate) 1:200 (Loewe)/1:500 (Agritest) in conjugate buffer. Add 100 or 200 µl to each well of the microtiter plate. Cover the plate and incubate at 37°C for 4h in a humid box.
- 6. Washing step:
- Repeat step 2.
- 7. Add Substrate:
- Dissolve the p-nitrophenylphosphate(PNP) (0.6-1 mg/ml) in substrate buffer and add 100 or 200 µl per well. Incubate at room temperature (18-25°C) till the yellow color reaction start to develop and read the plate at 60-120-180 min (if necessary, prolong the reaction over-night) using a plate reader at $\lambda = 405$ nm.
- The enzymatic reactions can be stopped by adding 25 µl 3 M NaOH (Sodium Hydroxide) to each well.

Diagnostics methods The procedure for the ELISA test Buffers required for ELISA (with no sterilization)

• PBS (pH 7.4):

NaCl	8 g
KH ₂ PO ₄ anhydrous	0.2 g
Na ₂ HPO ₄ anhydrous	1.15 g
KCI	0.2 g
$NaN_3(optional)$	0.2 g

Bring final volume to 1L with distilled water.

• Washing buffer (PBST):

PBS	1 L
Tween-20	0.5 ml

Store at room temperature.

Coating buffer (1 L; pH 9.6):

Na ₂ CO ₃ anhydrou	s 1.59 g
NaHCO3	2.93 g
NaN ₃ (optional)	0.2 g
Store at 4°C.	

DETECTION OF Xylella fastidiosa,2015

Diagnostics methods The procedure for the ELISA test Buffers required for ELISA(with no sterilization)

Extraction buffer/Conjugate buffer (1 L; pH 7.4):

PBST1 LPolyvinylpyrrolidone (PVP-25)20 gBovin serum albumin (BSA)2 gStore at 4°C.2 g

Substrate buffer (1 L; pH 9.8):

Diethanolamine	97 ml
$MgCl_2 \times 6H_2O$	0.2 g
NaN_3 (optional)	0.2 g

Bring to final volume of 1 L with distilled water. Adjust pH to 9.8 with 1N HCl. Store refrigerated at 4°C.

Molecular Diagnosis of *Xylella* PCR approaches to *X. fastidiosa* study

- The most commonly used PCR approaches to X. fastidiosa study, ranging from classical PCR, to several PCR-based detection methods:
- 1. random amplified polymorphic DNA (RAPD),
- 2. quantitative real-time PCR (qRT-PCR),
- 3. nested PCR (N-PCR),
- 4. immunocapture PCR (IC-PCR),
- 5. short sequence repeats (SSRs, also called VNTR),
- 6. single nucleotide polymorphisms (SNPs), and
- 7. multilocus sequence typing (MLST).

Molecular method	Advantages	Disadvantages	References
Classic PCR	High sensitivity, specificity and accurate results for the detaction of Xyleila and its subspecies also in non-axenic conditions. Many applications in molecular analysis. Easy diagnostic interpretation	Unable to quantify the target DNA, only qualitative test. Some metabolities or contaminants in the sample can interfere with PCR performance. PCR conditions must be optimized in each host and environment for better performance	Firso and Bazzi, 1994; Minaavage et al., 1994; Pooler and Hartung, 1995a; Barka et al., 1999; Rockigues et al., 2003; Huang and Sherald, 2004; Chen et al., 2006; Travenacio et al., 2005; Hernandez-Martinez et al., 2006; Martinati et al., 2007; Morano et al., 2008; Huang, 2009; Luingston et al., 2010; Melanson et al., 2012; Guan et al., 2015; Bleve et al., 2016
RAPD	Useful to study unknown species where there is not apriori, knowledge of sequencing. Quite useful to detect high polymorphisms. Limited cost, Simple and rapid, Small amount of template DNA required. The amplification products can be further characterized	Markers are dominant. Reproducibility can be low among labs and with different polymerases and facilities, especially when not using random primers with high annealing temperature. In many cases standardzation of the protocol for each lab is required. Nowadays this technique is considered obsolete	Denny et al., 1988; Hartung and Civerolo, 1989; Grajalmartin et al., 1993; Chen et al., 1995, 2002; Pooler and Hartung, 1996a; Albüb et al., 1998; Rosato et al., 1998; Banka et al., 1996; Hendison et al., 2001; Lacava et al., 2001; Clin et al., 2001; Su et al., 2008
RFLP	It was one of the first methods used for genetic fingerprinting. The basic RFLP analysis is no longer used. Variations exist such as terminal restriction fragment length polymorphism (TRFLP), which may still have applications resisted to the characterization of bacteria. By PCR-RFLP, the hybridization step can be skipped	Obsolete technique. Relatively large amount of DNA is required. RFLP approach is tedious and requires numerous steps that may take weeks to yield results. Relatively high cost and low polymorphism	Chen et al., 1992; Roaato et al., 1998; Mehta et al., 2001; Qir et al., 2001; Picchi et al., 2006
gRT-PCR	It allows not only the identification, but also the quantification of bacteria in real time. High sensitivity, specificity and reproducibility. Relatively fast method. It is possible to use also variations in meting temperature to differentiate strains of bacteria	Expensive equipment and reagents are required. Setting up and optimization of the protocol require specific technical skills as well the interpretation of results	Oliveira et al., 2002; Schaad et al., 2002; Bextine et al., 2005; Francis et al., 2006; Bextine and Chila, 2007; Choi et al., 2010; Harper et al., 2010; Brady et al., 2012; Guan et al., 2013; Li et al., 2013; Ionescu et al., 2016
SSR	Simple lab procedure, relatively low costs to start, based on PCR termocycler. High level of polymorphism and relatively low amount of target DNA required. Co-dominant markers. The reproducibility is quite good	Previous knowledge of the genomic sequence is required to design specific primers, thus SSRs are limited primarily to economically important species. Point mutations at the site of primer annesling could lead to occurrence of null alleles	Della Coletta-Fiho et al., 2001; Coletta and Machado, 2003; Lin et al., 2005; 2013, 2015; Monteco-Astas et al., 2007; Montes-Borrego et al., 2015; Francisco et al., 2017
MLST	Highly discriminatory nucleotide sequence based method of characterization based on the sequencing of approximately 450-bp internal fragments of seven housekeeping genes amplified by PCR. This approach is particularly helpful for the typing of bacterial pathogens. The system is very sensitive to discriminate X. fasticiosa subspecies and strains in rapid real time reactions. The major advantage of MLST is the possibility to compare the results obtained in different tackles. It may also be used to address basic questions about evolutionary and population biology of bacterial spp.	The analysis of only seven loci may limit the sensitivity, especially when close strains are analyzed. Sequencing of the PCR products using an automated sequencer is required. For that, MLST is not always suitable for routine intection controls or outbreak investigation due to relatively high cost and lack of broad access to high-throughput DNA sequencing	Boally et al., 2005; Schuanzei et al., 2005; Almeida et al., 2008; Yuan et al., 2010; Brady et al., 2012; Nunney et al., 2012; 2013; 2014a, b.o; Parker et al., 2012; Ebeaino et al., 2014; Harris and Balci, 2015; Marcelletti and Scortichini, 2016a; Bergiana-Viani et al., 2017; Coletta-Filho et al., 2017 Denancé et al., 2017; Kandel et al., 2017
Multiplex PCR	Costs are reduced when compared to standard PCR as well as reaction volumes. It allows rapid detection also of multiple strains simultaneously. Close tube system limits the risk of contamination	Primer design is the critical point, they can interfere each other giving false negative (games or bacteria undetected). Skilled personnel is required to perform the test	Podrigues et al., 2003; Choi et al., 2010; Myers et al., 2010; Lopes et al., 2014; Jacques et al., 2016
Nested PCR	Improved sensitivity and specificity when compared with classical PCR methodology. Useful technique for studying molecular epidemiology in the field	The protocol may be a little more difficult to optimize than for standard PCR. More time consuming and expensive than normal PCR. Unable to quantify the target DNA	Pooler et al., 1997: Buzkan et al., 2003; Ciapina et al., 2004; Huang, 2007; Silva et al., 2007; Lopes et al., 2014

Baldi and La Porta, 2017

Forward primer	Reverse primer	Size	Target	Hosts	Citations WoS - G-Scholar	References
RST31: GCGTTAATTTTCGAAGTGATTCGA	RST33: CACCATTOGTATCCCGGTG	733	7.4 kb EcoR1 restriction fragment	Grapevine, citrus, oak, red oak, sycamore, pium, goldenrod	193–285	Minsavage et al 1994
XF1-F: CAGCACATTGGTAGTAATAC	XF6_R: ACTAGGTATTAACCAATTGC	400	16s rDNA	Grapevine, almond, plum, American elm, citrus	(nd 2004) - 16	Firrao and Bazz 1994
208-1: ACGGCCGACCATTACTGCTG	208-2: ACGGCOGACCCGGAGTATCA	320	RAPD fragment	Citrus, grapevine, mulberry, almond, plum, elm, cak, ragweed, periwinkle	119-180	Pooler and Hartung, 1995a
203-1: CACGGCGAGTATOGGCTTTC	203-2: CAOGGOGAGTCGACGTAAAT	2,000	-			
204-1: TTCGGGCCGTCAATGTGTTG	204-2: TTOGGGCCGTTTACTCAAAG	800	2	<u>_</u>		
230-1: OGTOGOCCATCAAOGOCAAA	230-2: OGTOGCCCATTGTGCTGCAG	700	2	-		
272-1: AGOGGGCCAATATTCAATTGC	272-2: AGCGGGCCAAAAOGATGCGTG	700	-	-		
272-1-int: CTGCACTTACCCAATGCATOG	272-2-int: GCOGCTTCGGAGAGCATTCCT	500	-	-		
CVC-1: AGATGAAAACAATCATOGAAA	272-2: AGCGGGCCAAAAOGATGCGTG	600		Citrus		
CVC-1: AGATGAAAACAATCATCGAAA	272-2-int: GCOGCTTCGGAGAGCATTCCT	500	-	Citrus (specific)		
XF178f: AAACAATCACAGGGGACTGC	XF954r: CTATCOGAACACTTCCTATG	779	PD-specific RAPD fragment (PD1-1-2)	Grapevine (Pierce's disease)	20-29	Banks et al., 1999
XF176f: AAACAATCACAGGGGACTGC	XF686r: ATATTCATAGATTOOGTCGA	511	77	Citrus, mulberry, oak, periwinkie, peach, plum (Non-Pierce's disease)		
0067-a-S-19: COGCAGCACATTGGTAGTA	1439-a-A-19: CTCCTCGCGGTTAAGCTAC	1,348	16S rDNA	Citrus, grapevine, mulberry	43-70	Rodrigues et al. 2003
0067-a-S-19: CGGCAGCACATTGGTAGTA	0638-a-A-21: CGATACTGAGTGCCAATTTGC	745	-	-		
0838-a-S-21: GCAAATTGGCACTCAGTATCG	1439-a-A-19: CTCCTCGCGGTTAAGCTAC	603	-	-		
FXYgyr499: CAGTTAGGGGTGTCAGCG	RXYgyr907: CTCAATGTAATTACCCAAGGT	429	b-subunit polypeptide of the DNA gyrase (gyrB)	2		
G1: GAAGTOGTAACAAGG	L1: CAAGGCATCCACCGT	522	16S IDNA	Porcelain berry, wild grape, Mulberry		Huang and Sherald, 2004
Teme150fc: TCTACCTTATCGTGGGGGAC	Teme454rg: ACAACTAGGTATTAACCAATTGCC	348	16S rDNA	Almond	54-78	Chen et al., 2005
Teme150fc: TCTACCTTATCGTGGGGGAC	Xf16s1031r: AAGGCACCAATCCATCTCTG	700	2	2		
Dixon454fa: CCTTTTGTTGGGGGAAGAAAA	Dixon1261rg: TAGCTCACCCTCGCGAGATC	847	-	-		
REP1-R: IIIICGICGIATOCIGGC	XI-1: COGOGGTGTAGGAGGGGTTGT	350	Amplified genomic fragment	Citrus, grape, almond, mulberry, cak, periwrinkle, plum, coffee, elm, ragweed	3-7	Travensolo et a 2005
XF1968-L: GGAGGTTTAOCGAAGACAGAT	XF1968-R: ATCCACAGTAAAACCACATGC	638	Gene XF1968	Almond, oleander	21-42	Hemandez- Martinez et al., 2006

Baldi and La Porta,2017

Forward primer	Reverse primer	Size	Target	Hosts	Citations WoS - G-Scholar	References
XF2542-L:TTGATCGAGCTGATGATCG	XF2542-R: CAGTACAGCCTGCTGGAGTTA	412	Gene XF2542	Grape, almond, Spanish broom, Brassica spp.		
ALM1: CTGCAGAAATTGGAAACTTCAG	ALM2: GCCACACGTGATCTATGAA	521	Gene ALM1	Almond (specific)		
165-235F: GATGACTGGGGTGAAGTCGT	169-235R: GACACTTTTCGCAGGCTACC	650	16S-23S intergenic spacer	Citrus, coffee, grapevine, mulberry, almond elm, ragweed, periwinkle	1-2	Martinati et al., 2007
307 BBF: GCAAGTCAGGGTAGCGTCTC	943 BBR: GGCTTCTCTGTOGATTTTCG	nd	mopB	Grape, Sea myrtle, Redspike Mexican hat, others	5-10	Morano et al., 2008
HQ-OLS08: TGTACGTCCTGAAACCATCTTG	HQ-OL\$05: TTCTGGAAGCTTTGAGTAAGGG	274	RAPD fragment	Oleander (specific)	7-10	Huang, 2009
D056L: AACAAGGGACCTTCCATGC	D858R: AGCAATOGCTGCACCTAAAT	842	Succinyl-CoA synthetase alpha subunit (sucD)	Almond	0-0	Livingston et al. 2010
G1511: GATCCGGAAAGTGGGGAGATTACTATC	G368r: GCCATTGCAAAAGCAGTACGCTCA	217	DNA polymerase III subunit beta (dnaN)	-		
A1511: GATGOGGAAAGOGGGGGAGATTACTATT	A518r: GCCTTTACGCGGCAAAATAATCTGA	367	DNA polymerase III subunit beta (dnaN)	-		
A971: CATGCTGGTGGTAAGTTCGACGATAAC	A476r: CAACAATGCCGTTGTGCTCACOG	379	b-subunit polypeptide of the DNA gyrase (gyrB)			
G2231: CGGTGGOGAAAOGGTAATCC	G705r: GGAGAAATGTTTGGCAAAGACAGGC	482	mdh Malate dehydrogenase	-		
A3451: TTTTTCAATGTTGGCGACAGGCTTACT	A705r: GGAGAAATGTTTGGCAAAGACAGGT	360	mdh Malate dehydrogenase	-		
B001L: TTAGGTGGCAAGGATOGAAT	B462R: GGGCCGATCAAAATCAATCT	491	ppiB Peptidyl-prolyl cis-trans isomerase	-		
A284f: GACGAGTTTGCCAAGTTTGATGATGAAAATC	A680r: GCCAGTCGAACCCACCAAG	396	gitA Citrate synthase	-		
1068L: CGTGGGTCACGAGTCATAAA	1386R: TCACACAAAACTAOGGCACTG	368	rpsi 305 ribosomal protein 59	-		
PspB-256f: TGAGTGCCTGCGGTGGTA	PspB-256r: CGAAACTTGGCAGCTAACG	256	pspB Serine protease	-		
XFPgIA_Fw: GOCTCOGGTGOGACTGCTTC	XFPgIA_Rv: GCTGCGATTGGACACACATTG	nd	PgIA	Pecan, Grapevine, Oleander, sycamore	10-14	Melanson et al. 2012
Mul-15040-F: ATTTOGCGATTITGGAGTT	Mul-15040-R: TTCTTGTGTACTCCGCCTCA	312	Hypothetical protein with putative bacilithiol system oxidoreductase. YpdA family	Mulberry and olive (specific)	2-2	Guan et al., 2015
Xfa-rpod-F4: ACTGAGGTTGTCGTTGGCTT	Xfa-rpod-R4: CCTCAGGCATGTCCATTTCC	888	RNA polymerase sigma-70 factor (rpoD)	Olive, citrus, coffee	1-2	Bleve et al., 2016
Xfa-dnaA-2F: TTOCATCAAATTGACGCGCT	Xfa-dnaA-2R: CGGCAAGCATGTAACACTGT	650	Chromosomal replication initiator protein DnaA (dnaA)	10		

Baldi and La Porta,2017

PCR detection and identification of plant pathogenic bacteria

Name of primers and target DNA used

			Genus X	ylella			
Species / hosts	Primer name Target DNA	Variant of PCR protocol	Sample	(treatment)	Referen	ce	Synonyms/observations
X. fastidiosa / citrus	X. fastidiosa citrus strains specific CVC-1/272-2-int RAPD fragment X. fastidiosa strains (general) 272-1-int/272-2-int	Conventional	Bacteria, extraction	, sap (DNA n)	Pooler and Hartung, 19	995	
	XF2542-L/XF2542 XF2542 fimbrial proto gene ALM1/ALM2 Genomic DNA (unkno	ein					
X. fastidiosa	272-1/272-2 (externa 272-1-int/272-2-int (internal) RAPD fragment	,	netic	Immunom separation tissue extr	of insects	Pooler <i>et al.,</i> 1997	
X. fastidiosa	S-S-X.fas (sets A, B, C 16S rRNA gene FXYgyr499/RXYgyr5 gyr8 gene	Multiple	x	Plant tissu insects (Di extraction)	NA	Rodrigues <i>et al.,</i> 2003	
X. fastidiosa	RST31/RST33 Genomic DNA (unkno G1/L1 ITS region	wwn) Conventio Immunocaptu convention	re and	Plant (DN extraction		Costa <i>et al.,</i> 2004	
X. fastidiosa	RST31/RST33 Genomic DNA (unkno HL5/HL6 Genomic DNA (unkno Probe 5'6FAM-labeled 3'BHQ1™ labeled		e	Plant and vectors (D extraction	NA	Francis <i>et al.,</i> 2006	

Palacio-Bielsa et al.,2009

PCR detection and identification of plant pathogenic bacteria

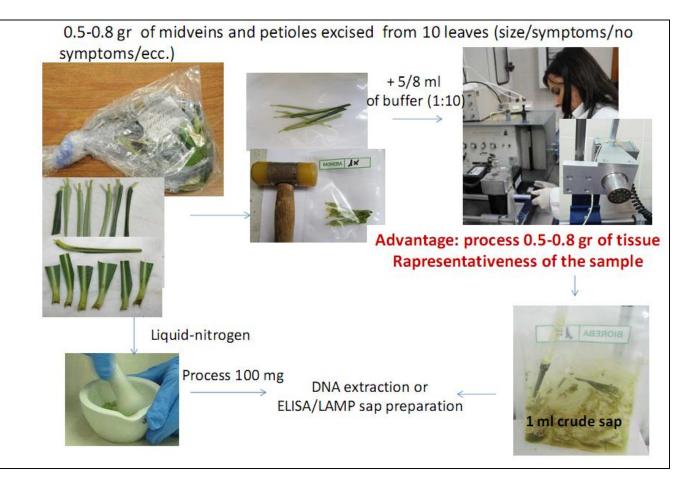
Name of primers and target DNA, sample treatment in the original article, variant of PCR protocol, reference and observations for plant pathogenic bacteria according to ISPP nomenclature. When the nomenclature reported in articles differs, the originally cited names of side of the table bacteria are indicated on the right

X. fastidiosa / citrus	Primers CVC-1/CCSM-1 Probe TAQCVC 5'6FAM- labeled 3'TAMRA labeled Genomic DNA (unknown)	Real-time (TaqMan)	Bacteria, leaf (DNA extraction)	Oliveira <i>et al.,</i> 2002	
X. fastidiosa / grapevine	RST31/RST33 Genomic DNA (unknown)	Conventional	Bacteria, leaf (DNA extraction)	Berisha <i>et al.,</i> 1998	
X. fastidiosa / grapevine	XfF1/XfR1 ITS region XfF2/XfR2 16S rRNA gene Probes 5'6FAM-labeled 3'TAMRA labeled (ITS) 5'6FAM-labeled 3'TAMRA labeled (16S)	Real-time (TaqMan) Multiplex-Real-time (TaqMan)	Sap and macerated chips of secondary trunks of vines xylem (untreated)	Schaad <i>et al.,</i> 2002	
X. fastidiosa / grapevine	XfF1/XfR1 ITS region Probe 5'6FAM-labeled 3'TAMRA labeled ITS	Real-time (TaqMan) BIO (Agar absorption)	Xylem sap (DNA extraction) Leaf and petiole (directly or previous plating)	Baumgartner and Warren, 2005 Fatmi <i>et al.,</i> 2005	
<i>X. fastidiosa /</i> citrus and grapevine	RST31/RST33 Genomic DNA (unknown)	Conventional	Plant and xylem fluid (PVPP and sodium ascorbate addition)	Minsavage <i>et al.,</i> 1994	
X. <i>fastidiosa /</i> citrus and grapevine	X. fastidiosa grapevine strains RST31/RST33 Genomic DNA (unknown) X. fastidiosa citrus strains CVC-1/272-2-int RAPD fragment	Conventional	Plant and xylem fluid (DNA extraction)	Minsavage <i>et al.,</i> 1994; Pooler and Hartung, 1995; Anon., 2004b	Recommended in the EPPO protocol.
X. fastidiosa / citrus and coffe	JB-1/JB-2 RAPD fragment	Conventional	Plant tissue (DNA extraction)	Ferreira et al., 2000	Strains from various hosts amplified at annealing 64°C. Only citrus and coffe related strains amplify at 68°C.
<i>X. fastidiosa /</i> grapevine and oleander	RST31/RST33 Genomic DNA (unknown)	Conventional	Bacteria, xylem sap or plant (DNA extraction)	Bextine and Miller, 2004	
X. fastidiosa / grapevine, almond, oleander	XF1968-L/1968-R XF1968 methyltransferase gene	Conventional Multiprimer	Bacteria, plant tissue (DNA extraction)	Hernandez- Martinez <i>et al.,</i> 2006	

Palacio-Bielsa et al.,2009

Primer Name	Sequence	Reference	Application
272-1-INT	CTGCACTTACCCAATGCATCG	Pooler and Hartung (1995)	Detection
272-2-INT	GCCGCTTCGGAGAGCATTCCT	Pooler and Hartung (1995)	Detection
27f	AGAGTTTGATCMTGGCTCAG	Lane (1991)	Detection
143r	GTCCCCCACGATAAGGTAGA	Lane (1991)	Detection
S-S-X.fas-0067-a-S-19	CGGCAGCACATTGGTAGTA	Rodrigues et al. (2003)	16S Sequencing
S-S-X.fas-0838-a-S-21	GCAAATTGGCACTCAGTATCG	Rodrigues et al. (2003)	16S Sequencing
S-S-X.fas-0838-a-A-21	CGATACTGAGTGCCAATTTGC	Rodrigues et al. (2003)	16S Sequencing
S-S-X.fas-1439-a-A-19	CTCCTCGCGGTTAAGCTAC	Rodrigues et al. (2003)	16S Sequencing
1525r	AAGGAGGTGWTCCARCC	Lane (1991)	16S Sequencing
1439-a-S-19	GTAGCTTAACCGCGAGGAG	Modified from Rodrigues et al. (2003)	16S-23S Sequencing
Xf 16S 1430F	AGCAGGTAGCTTAACCGCGA	Mundell, this study	16S-23S Sequencing
23S uni 322	GGTTCTTTTCGCCTTTCCCTC	Honeycutt et al. (1995)	16S-23S Sequencing
G1	GAAGTCGTAACAAGG	Jensen et al. (1993)	16S-23S Sequencing
23S-	TAC GGC CCT TTC GGA TAC AG	Mundell, this study	16S-23S Sequencing
23S-A-1998	ACCAGGTTCGCCTCCTTGAG	Mundell, this study	16S-23S Sequencing
23r	GTGCCAAGGCATCCACC	Li and de Boer (1995)	16S-23S Sequencing
FXYgyr499	CAGTTAGGGGTGTCAGCG	Rodrigues et al. (2003)	gyrB Sequencing
RXYgyr907	CTCAATGTAATTACCCAAGGT	Rodrigues et al. (2003)	gyrB Sequencing
LH18SRNAf	CGCGGTAATTCCAGCTCC	Mundell, this study	LH18SRNA
LH18SRNAr	CGGTGTGTACAAAGGGCAGG	Mundell, this study	LH18SRNA
LH28SRNAf	GAGAGTTCAAGAGTACGTGA	Mundell, this study	LH28SRNA
LH28SRNAr	CAGCTCTGACGATCGATTG	Mundell, this study	LH28SRNA

Primer Set	Forward Primer	Reverse Primer	Application	Product Length (bp)	Positive Tm Range (°C)	Annealing Temperature (°C)
27f-143r	27f	143r	Detection	116	83.01-84.3	60
272-int	272-1-int	272-2-int	Detection	472	79.4-80.9	62
16S Set B	S-S-X.fas-0067-a-S-19	S-S-X.fas-0838-a-S-21	16S Sequencing	771	82.05-84.28	56
16S Set C	S-S-X.fas-0838-a-A-21	S-S-X.fas-1439-a-A-19	16S Sequencing	619	83.63-84.48	56
16S 2nd	S-S-X.fas-0838-a-A-21	1525r	16S Sequencing	707	83.45-83.74	56
gyrB	FXYgyr499	RXYgyr907	gyrB Sequencing	429	79.72-80.27	54
LH18SRNA	LH18SRNAf	LH18SRNAr	Leafhopper 18S rDNA	1156	82.76-83.63	62
LH28SRNA	LH28SRNAf	LH28SRNAr	Leafhopper 28S rDNA	800	89.6-89.95	62


Mundell,2005

Molecular Diagnosis of *Xylella* **Conventional PCR(C-PCR) DNA extraction for plant material**

CTAB-based extraction

- 0.5-1 g of fresh small pieces of midribs, petioles, leaf basal part or twigs (1/4 of the indicated amount, if lyophilized) should be weighed, put into the extraction bags or into suitable tubes with 5 mL of CTAB buffer and homogenized using a homogenizer (e.g. Homex, Polytron, etc.).
- I mL of extract should be transferred into a 1.5-mL micro-centrifuge tube and the sample should be heated at 65°C for 30 min and then centrifuged at 16 000 g for 5 min. 1 mL of the supernatant from centrifugation should be transferred to a new 2-mL micro-centrifuge tube, with care being taken not to transfer any of the plant tissue debris. 1 mL of chloroform:isoamyl alcohol (24:1) should be added and the sample should be mixed well by shaking.
- After centrifugation at 16 000 g for 10 min, 700 µL of the supernatant should be transferred to a 1.5-mL micro-centrifuge tube and 490 µL (approximately 0.7 volumes) of cold 2-propanol should be added. After mixing by inverting twice, the tube should be incubated at -20°C for 20 min.
- Centrifugation of the samples at 16 000 g for 20 min will allow recovery of a pellet that should be washed with 1 mL of 70% ethanol. An additional centrifugation at 16 000 g for 10 min and decantation in 70% ethanol should be performed. Sample should be air or vacuum-dried. The pellet should be resuspended in 100–150 µL of TE buffer or RNase- and DNase-free water.

Detection procedure Conventional PCR(C-PCR) Sample preparation DNA extraction

Loconsole,2016;..

Molecular Diagnosis of *Xylella* **Conventional PCR(C-PCR) Nucleic acid extraction from pure cultures**

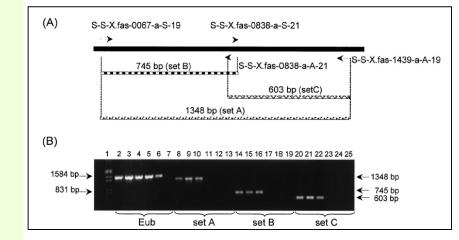
- For pure cultures, a single colony of fresh pure culture is suspended in approximately 1 mL of molecular-grade water; lysis should be performed at 100°C for 5 min.
- Extracts of total nucleic acids can be stored at 4°C for immediate use or at -20°C for further use.

Primers used for detection of ribosomal RNA (16S rDNA)

- Primers were designed based on the sequence of the 16S rRNA gene (XFr04) of *X. fastidiosa* strain 9a5c, isolated from sweet orange in Brazil.
- The primers, designated
- XFr04af (5'-TAAGTG AAG AGT TTG ATC CTG GC-3'), and
- XFr04ar (5'-AAAGGA GGT GAT CCA GCC-3'), directed the amplification of the entire gene, producing an amplicon of 1,545 bp.

Primers used for detection of ribosomal RNA (16S rDNA)

Forward primer	Reverse primer	Size	Target	Hosts	References
XF1-F: CAGCACATTGGTAGT AATAC	XF6-R: ACTAGGTATTAACCAATTGC	400	16s rDNA	Grapevine, almond, plum, American elm, citrus	Firrao and Bazzi, 1994
0067-a-S-19: CGGCAGCACATTGGT AGTA	1439-a-A-19: CTCCTCGCGGTTAAGCTAC	1,348	16s rDNA	Citrus, grapevine, mulberry	Rodrigues <i>et</i> <i>al.</i> , 2003
S-S-X.fas-0838-a-S- 21(Forward): GCAAATTGGCACTCA GTATCG	S-S-X.fas-1439-a-A- 19(Rrverse): CTCCTCGCGGTTAAGCTAC	603	16s rDNA		Rodrigues <i>et</i> <i>al.</i> , 2003
0067-a-S-19: CGGCAGCACATTGGT AGTA	0838-a-A-21: CGATACTGAGTGCCAATTTGC	745	16s rDNA		Rodrigues <i>et</i> <i>al.</i> , 2003
G1: GAAGTCGTAACAAGG	L1: CAAGGCATCCACCGT	522	16s rDNA	Porcelain berry, wild grape, Mulberry	Huang and Sherald, 2004


Baldi and La Porta,2017;..

Primers used for detection of ribosomal RNA (16S rDNA)

Forward primer	Reverse primer	Size	Target	Hosts	References
Teme150fc: TCTACCTTATCGTGG GGGAC	Teme454rg: ACAACTAGGTATTAACCAATT GCC	348	16s rDNA	Almond	Chen <i>et al.,</i> 2005
Teme150fc: TCTACCTTATCGTGG GGGAC	Xf16s1031r: AAGGCACCAATCCATCTCTG	700	16s rDNA		Chen <i>et al.</i> , 2005
Dixon454fa: CCTTTTGTTGGGGAA GAAAA	Dixon1261rg: TAGCTCACCCTCGCGAGATC	847	16s rDNA		Chen <i>et al.,</i> 2005

X. fastidiosa-specific (sets A to C) primers target ribosomal RNA (16S rDNA)

- A. Scheme of relative position of the 16S rRNA gene-specific primers for *X. fastidiosa*.
- B. Ethidium bromide-stained agarose gel of PCR products after amplification of the 16S rRNA gene with eubacterial (Eub) or *X. fastidiosa*-specific (sets A to C) primers.
- The expected sizes for specific primer sets A, B, and C are 1,348, 745, and 603 bp, respectively.

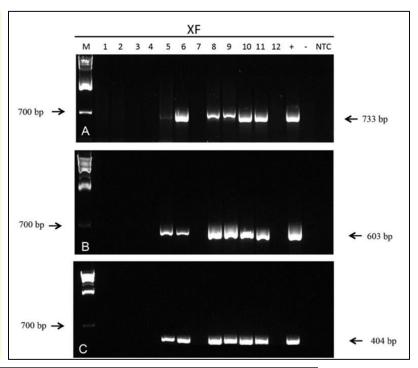
Primers used for detection of the target genes RNA polymerase sigma factor (RST) and ribosomal RNA (16S rDNA)

- The primer sets tested in this work have previously been used for generic detection of *X. fastidiosa* by targeting conserved genomic regions.
- The list includes primers RST31/33 targeting RNA polymerase sigma-70 factor (rpoD)(Minsavage *et al.*,1994), which are widely accepted for the detection of the bacterium in quarantine programs (EPPO, 2004), as well as primers targeting the 16S rDNA genomic region (Firrao *et al.*,1994; Rodriguez *et al.*,2003), which are more suitable for accurate detection of a wider number of genetically diverse strains of *X. fastidiosa* (Harper *et al.*,2010).

Target gene	Primers	Amplicon size (bp)	Sequence (5' ®3')	References
RNA polymerase sigma factor	RST-31 RST-33	733	GCGTTAATTTTCGAAGTGATTCGATTGC CACCATTCGTATCCCGGTG	Minsavage et al ., 1994
16S rDNA	XF-1 XF-6	404	CAGCACATTGGTAGTAATAC ACTAGGTATTAACCAATTGC	Firrao and Bazzi, 1994
16S rDNA	S-S-X.fas-0838-a-S-21 S-S-X.fas-1439-a-A-19	603	GCAAATTGGCACTCAGTATCG CTCCTCGCGGGTTAAGCTAC	Rodrigues et al., 2003

Loconsole et al.,2014

Primers used for detection of the target genes RNA polymerase sigma factor (RST) and ribosomal RNA (16S rDNA)

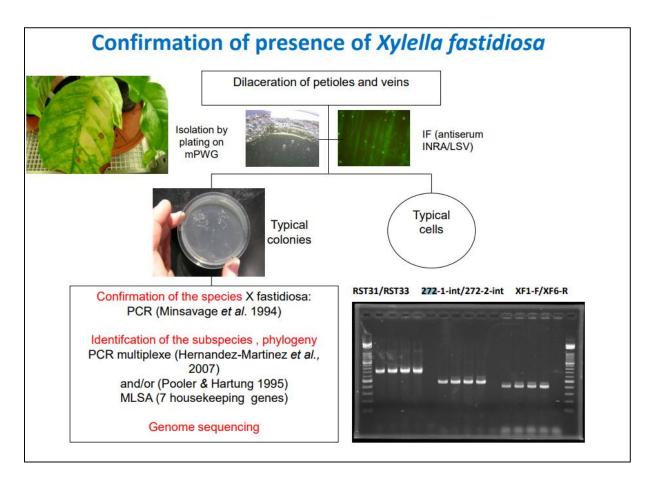

- The primer sets tested in this work have previously been used for generic detection of *X. fastidiosa* by targeting conserved genomic regions.
- The list includes primers RST31/33 (Minsavage *et al.*,1994), and primers targeting the 16S rDNA genomic region (Firrao *et al.*,1994; Rodrigues *et al.*,2003), which are more suitable for accurate detection of a wider number of genetically diverse strains of *X. fastidiosa* (Harper *et al.*,2010).

Primers used for detection of the target genes RNA polymerase sigma factor (RST) and ribosomal RNA (16S rDNA)

- PCR reactions for amplification of 16S rDNA and RNA polymerase sigma factor (RST) were performed in 1X GoTaq buffer (Promega, USA) in a final volume of 25 µl containing 2 µl TNA, 160 µM dNTPs, 0.2 µM of each primer and 1.25 U of GoTaq DNA polymerase (Promega, USA).
- PCR conditions were different depending on the primer set used.
- They initially consisted of a denaturation step at 95°C for 5 min followed by 35 cycles of 30 sec at 94°C, 30 sec at 50°C for XF1-F/XF6-R or 55°C for RST31/RST33 and S-S-X.fas-0838-a-S21/S-S-X.fas-1439-a-A-19, and 40 sec at 72°C.
- All reactions were finally extended at 72°C for 7 min and visualized on agarose gel.

Primers used for detection of the target genes RNA polymerase sigma factor (RST) and ribosomal RNA (16S rDNA)

- Gel electrophoresis of PCR products recovered from the samples XF1-XF12.
- Target gene/primers:
- 1. RNA polymerase sigma factor RST-31/RST-33 (733 bp)
- 2. 16S rDNA XF-1/XF-6 (404 bp)
- 3. 16S rDNA S-S-X.fas-0838-a-S-21/S-S-X.fas-1439a-A-19 (603 bp)
- M. DNA ladder;
- A. + = positive control;
- B. = negative control;
- c. NTC = non-template control.
- The primer set XF1/XF6 and S-S-X.fas-0838-a-S-21S-S-X.fas-1439-a-A-19 gave comparable results, while primers RST31/RST33 amplified DNA bands showing a lighter signal.



Target gene	Primers	Amplicon size (bp)	Sequence (5' ®3')	References
RNA polymerase sigma factor	RST-31 RST-33	733	GCGTTAATTTTCGAAGTGATTCGATTGC CACCATTCGTATCCCGGTG	Minsavage et al ., 1994
16S rDNA	XF-1 XF-6	404	CAGCACATTGGTAGTAATAC ACTAGGTATTAACCAATTGC	Firrao and Bazzi, 1994
16S rDNA	S-S-X.fas-0838-a-S-21 S-S-X.fas-1439-a-A-19	603	GCAAATTGGCACTCAGTATCG CTCCTCGCGGGTTAAGCTAC	Rodrigues et al., 2003

Loconsole et al.,2014

- PCR using universal primer set RST31-RST33 generated an expected 721-bp amplicon, confirming the *X. fastidiosa* identity of the Almond leaf scorch disease(ALSD) strains. Target part of the *rpoD* gene (sequence is located in the 3' end of the gene *rpoD*) coding for an RNA polymerase sigma-70 factor.
- RST31F: 5'-GCGTTAATTTTCGAAGTGATTCGATTGC-3'
- RST33R: 5'-CACCATTCGTATCCCGGTG-3'
- 16S rRNA gene sequences are highly conserved at the species level, making them good candidates for species identification.
- XF1-F: 5'-CAGCACATTGGTAGTAATAC-3'
- XF6-R: 5'-ACTAGGTATTAACCAATTGC-3'
- Universal primers 272-1-int and 272-2-int, targeting hypothetical protein HL gene generate a PCR product of 500/600 bp may also be used to to detect all known strains of *X. fastidiosa* including citrus as well as for grapevine.
- 272-1-int (forward): 5'-CTG CAC TTA CCC AAT GCA TCG-3'
- □ 272-2-int (reverse): 5′-GCC GCT TCG GAG AGC ATT CCT-3′

PCR primers: RST31F/RST33R, XF1-F/XF6-R and 272-1-int/272-2-int

Legendre et al.,2015

- Hypothetical protein HL gene:
- Despite a relatively high number of nucleotide sequences of *X. fastidiosa* deposited for many genes, including those described before, a very low number of sequences of hypothetical protein (HL) still exist in all public nucleotide databases.

Target Gene	Primer s pairs	Oligonucloetide sequence (5'→3')	Approx. amplicon size (bp)	References
Hypothetical protein (HL)	HL5 HL6	AAGGCAATAAACGCGCACTA GGTTTTGCTGACTGGCAACA	221	Francis <i>et</i> <i>al</i> ., 2006

- The 16S-23S rRNA intergenic regions of the porcelain berry, wild grape, and mulberry strains of *X. fastidiosa* was amplified by PCR with primers:
- □ G1 (5'-GAAGTCGTAACAAGG-3') and
- L1 (5'-CAAGGCATCCACCGT-3')
- CVC specific primers:
- Primers CVC-1 and 272-2-int, which generate a PCR product of 500 base pairs, are used for the detection of *X. fastidiosa* causing Citrus Variegated Chlorosis (CVC).
- DNA fragments are used (Pooler & Hartung, 1995):
- CVC-1: 5'-AGATGAAAACAATCATGCAAA-3'
- 272-1-int: 5'-GCCGCTTCGGAGAGCATTCCT-3'.

Assa	ay Primers name	Target gene Name	Sequence (5'-3')	References	
	RNA polymerase sigma factor	RST-31F	GCGTTAATTTTCGAAGTGATT CGATTGC	Minsavage <i>et al</i> ., 1994	
	i kun polymerase signia ractor	RST-33R	CACCATTCGTATCCCGGTG		
	16S rRNA	S-S-X.fas-0838-a-S-21	GCAAATTGGCACTCAGTATCG	Rodriguez <i>et al.</i> , 2003	
		S-S-X.fas-1439-a-A-19	CTCCTCGCGGTTAAGCTAC		
PCR		FXYgyr499	CAGTTAGGGGTGTCAGCG		
	gyrB	RXYgyr907	CTCAATGTAATTACCCAAGGT	Rodriguez <i>et al.</i> , 2003	
	Internal transcriber spaces (ITS)	HL5	AAGGCAATAAACGCGCACTA	Francis at al. 2006	
	Internal transcriber spacers (ITS)	HL6	GGTTTTGCTGACTGGCAACA	Francis <i>et al</i> ., 2006	

Conventional PCR(C-PCR)

Master mix composition, cycling parameters and amplicons for conventional PCR using the 16S rRNA gene-targeted primers of Rodrigues *et al.*,2003 **PCR primers**

- Set A:
- S-S-X.fas-0067-a-S-19 (forward): 5'-CGG CAG CAC ATT GGT AGT A-3'
- S-S-X.fas-1439-a-A-19 (reverse): 5'-CTC CTC GCG GTT AAG CTA C-3'
- Primer set A amplifies a product of 1348 bp.
- Set B:
- S-S-X.fas-0067-a-S-19 (forward): 5'-CGG CAG CAC ATT GGT AGT A-3'
- S-S-X.fas-0838-a-A-21 (reverse): 5'-CGA TAC TGA GTG CCA ATT TGC-3'
- Primer set B amplifies a product of 745 bp.
- Set C:
- S-S-X.fas-0838-a-S-21 (forward): 5'-GCA AAT TGG CAC TCA GTA TCG-3'
- S-S-X.fas-1439-a-A-19 (reverse): 5'-CTC CTC GCG GTT AAG CTA C-3'
- Primer set C amplifies a product of 603 bp.

Molecular Diagnosis of *Xylella* **Conventional PCR(C-PCR)** 2 3 4 5 6 7 8 9 1.5 kb 1.0 kb 2594F-2594R **PCR** primers 0.5 kb 8×10⁴ 8×10³ 8×10² 80 8 0 CFU CFU CFU CFU CFU CFU

- OLIGO Primer Analysis Software was used to facilitate the design of 2594F and 2594R, which flank FX2594 in the M12 genome.
- Designed to amplify a 1323-bp DNA fragment from A-type strains of *X. fastidiosa*.
- The 2594F-2594R primer pair was approximately 1000-fold less sensitive than the RST32-RST33 primer pair.

2594F	GAAACTGGCACGGACCGCT	1222	ALS	This study
2594R	AGCAGCTTGCCGACCCTCGATA	1323	OLS	This study

ALS = almond leaf scorch strains; OLS = oleander leaf scorch

C)

Program for designing the primer pair of 2594F and 2594R for *Xylella fastidiosa*

OLIGO Primer Analysis Software was used to facilitate the design of 2594F and 2594R, which flank FX2594 in the M12 genome.

LOCAT	ION OF 2594	F AND 25941	R PRIMER SI	TES FLANK	ING THE FX	2594 LOCUS
		WITH	IIN THE M12	GENOME		
Yellow den	otes forward p	orimer 2594F	(5'-GAAACT	GGCACGGA	CCGCT-3')	
Red denotes	s reverse prim	er 2594R (5'-	ICGTCGAA	CGGCTGGG	AGCTAT-3')	
Aqua denot	es sequence fo	or gene FX259	94			
LOCUS DEFINITION ACCESSION		fastidiosa 1	p DNA M12, complet 823701182	te genome	BCT 24-MAR-	2008
ORIGIN						
	ctacatttaa	cccategeac	tcacacgttt	gctgcccctt	gcaacatcgc	ggcgacaatg
61	acataccagt	caaacagcac	ccggcacaca	acgcggccag	cgatggcatt	acateceegg
121	tcacagacct	geaceatege	ggctaacggc	acgacctgca	acaacggttc	ccagcagtgc
181	cagcggctta	acgcactgca	gttacttcct	gcctgcgaca	gcgttaacgt	cccatatgeo
					acgtgagtcc	
301	ccgccgcgtg	actgcagtcc	cccttagcat	ceggeacect	ggttgcacat	cgaccttact
361	agatatgtcg	ccactgaaac	tggcacggac	cgctcttgcg	atcaccgtag	aacaacgcaa
					gececetace	
					caacgagtac	
					ttageggtee	
					tgcaaccgca	
					atgcggatgc	
					tetegecact	
					gcgcagette	
					acactgagee	
					gcgaacagcg	
					gttctctcta	
					ggcaagcaga	
					tegaaggeat	
					taaaaggcat	
					atataaaaga	
					caccaegeag	
					ggegegette	
					acccaccaca ttcaccgaga	
					acggcaagaa	
					tgcagcagtg actccgtgca	
	gleaacageg				atcaacggct	
					gagatcgacg	
1/41	gegeeagege	drdcrddadc	gaagggatga	ggrggcccac	gagarcgacg	reaagergeg

Conventional PCR(C-PCR) Primer pair CVC-1and 272-2-Int

PCR conditions: 94°C for 4 min followed by 30 cycles of (94°C for 1 min, 62°C for 1 min, 72°C for 1 min) and a final step of 72°C for 10 min.

Reagent	Working concentration	Volume per reaction (µL)	Final concentration
Molecular-grade water*	N.A.	18.3	N.A.
Taq DNA polymerase buffer (Invitrogen)	×10	2.5	×1
MgCl ₂	50 mM	0.75	1.5 mM
dNTPs	20 mM	0.25	0.2 mM
Forward primer (CVC-1)	20 µM	0.5	0.4 μM
Reverse primer (272-2- Int)	20 µM	0.5	0.4 µM
Platinum Taq DNA polymerase (Invitrogen)	5 U μL ⁻¹	0.2	0.04 U μL ⁻¹
Subtotal		23	
Genomic DNA from plant extract (final concentration and its 10- and 100-fold dilutions) or bacterial suspension		2	
Total		25	

*Molecular-grade water should preferably be used, or prepared purified (deionized or distilled), sterile (autoclaved or 0.45-µm filtered) and nuclease-free.

EPPO,2016

Molecular Diagnosis of *Xylella* Conventional PCR (C-PCR) Primer set RST31-RST33

- The test is based on Minsavage et al.,1994.
- The target sequence is located in the 3' end of the gene *rpoD*, coding for an RNA polymerase sigma-70 factor/sigma-70 (gene rpoD).
- The forward primer RST31 sequence is:
- RST31 (forward): 5'-GCGTTAATTTTCGAAGTGATTCGATTGC-3'
- RST33 (reverse): 5'-CACCATTCGTATCCCGGTG-3'
- Amplicon size: 733 bp.
- PCR conditions
- 95°C for 1 min followed by 40 cycles of (95°C for 30 s, 55°C for

Primer Name	Sequence (5'-3')	Target Gene	Reference
RST31	GCGTTAATTTTCGAAGTGATTCGA	Unique <i>E.coli</i> R 1 fragment	Minesavage <i>et al.</i> , 1994
RST33	CACCATTCGTATCCCGGTG		Minesavage <i>et al.</i> , 1994

EPPO Standards,2016

Molecular Diagnosis of Xylella PCR Primers useful for detection of *X. fastidiosa* Conventional PCR(C-PCR)

- To detect X. fastidiosa, three specific primers sets can be used:
- RST31/33(target gene: *rpoD*, coding for an RNA polymerase sigma-70 factor). For the PD strain(Pierce's disease of grapevine, the RST primers can be used (Minesavage *et al.*,1994)
- XF1-F/XF6-R (target gene: 16S rDNA);

Primer Name	Sequence (5'-3')	Target Gene	Reference
RST31	GCGTTAATTTTCGAAGTGATTCGA	Unime E coli D 1 from out	Minesavage et al., 1994
RST33	CACCATTCGTATCCCGGTG	Unique <i>E.coli</i> R 1 fragment	Minesavage et al., 1994
XF1-F	CAGCACATTGGTAGTAATAC	16S rDNA	Firrao and Bazzi, 1994
XF6-R	ACTAGGTATTAACCAATTGC	165 rDINA	Firrao and Bazzi, 1994

Molecular Diagnosis of Xylella PCR Primers useful for detection of *X. fastidiosa* Conventional PCR (C-PCR)

- To detect Xylella fastidiosa, three specific primers sets can be used.
- For the Pierce's disease strain of *Xylella fastidiosa* the RST primers should be used (Minesavage et al, 1994).
- For strains not occurring in grapevine the XF primers can be used.
- It is important to use housekeeping genes such as ribosomal DNA to ensure the DNA template does not contain PCR inhibitors.
- This eliminates the possibility of a false negative result.
- All primers were used at a concentration of 100 ng/µl.

Primer Name	Sequence (5'-3')	Target Gene	Reference
RST31	GCGTTAATTTTCGAAGTGATTCGA	Unknown fragment	Minesavage et al.,1994
RST33	CACCATTCGTATCCCGGTG		Minesavage et al., 1994
XF1-F	CAGCACATTGGTAGTAATAC	16S rDNA	Firrao & Bazzi, 1994
XF6-R	ACTAGGTATTAACCAATTGC		Firrao & Bazzi, 1994
FD2	AGAGTTTGATCATGGCTCAG	16S rDNA	Weisburg et al., 1991
RP1	ACGGTTACCTTGTTACGACTT		Weisburg et al., 1991

FD2/RP1 primer (Weisburg et al., 1991)

The National Diagnostic Protocol (NDP) for *Xylella fastidiosa*,2012

Conventional PCR(C-PCR) Master mix for the RST31/33 primer set PCR conditions: 95°C for 1 min followed by 40 cycles of (95°C for 30 s, 55°C for 30 s, 72°C for 45 s) and a final step of 72°C for 5 min.

Reagent	Working concentration	Volume per reaction (µL)	Final concentration
Molecular-grade water*	N.A.	18.6	N.A.
Taq DNA polymerase buffer (Invitrogen)	×10	2.5	×1
MgCl ₂	50 mM	0.75	1.5 mM
dNTPs	20 mM	0.25	0.2 mM
Forward primer (RST31)	20 µM	0.375	0.3 μM
Reverse primer (RST33)	20 µM	0.375	0.3 µM
Platinum Taq DNA polymerase (Invitrogen)	5 U μL ⁻¹	0.15	0.03 U μL ⁻¹
Subtotal		23	
Genomic DNA from plant tissue extract or bacterial suspension		2	
Total		25	

*Molecular-grade water should preferably be used, or prepared purified (deionized or distilled), sterile (autoclaved or 0.45-µm filtered) and nuclease-free.

Conventional PCR(C-PCR) Master mix for the RST31/33 primer set Master mix composition for PCR and cycling conditions for a final reaction volume of 20 µl using the primers of Minsavage *et al.*,1994

The oligonucleotide primers used are:

RST31 (forward): 5'-GCG TTA ATT TTC GAA GTG ATT CGA TTG C-3' RST33 (reverse): 5'-CAC CAT TCG TAT CCC GGT G-3'

The master mix used for this PCR developed by Minsavage et al. (1994) is described in Table 2.

Table 2. Master mix composition, cycling parameters and amplicons for conventional PCR using the primers of Minsavage *et al.* (1994)

Reagents	Final concentration		
PCR grade water	_t		
PCR buffer (Invitrogen) ¹	1×		
dNTPs	200 µM		
MgCl ₂	1.5 mM		
Primer RST31 (forward)	0.5 µM		
Primer RST33 (reverse)	0.5 µM		
Taq DNA polymerase (Invitrogen) ¹	1.25 U		
DNA volume	2 µl bacterial suspension or DNA extract		
Cycling parameters			
Initial denaturation	95 °C for 1 min		
Number of cycles	40		
- Denaturation	95 °C for 30 s		
- Annealing	55 °C for 30 s		
- Elongation	72 °C for 45 s		
Final elongation	72 °C for 5 min		
Expected amplicons			
Expected amplicons			

bp, base pairs; PCR, polymerase chain reaction.

ISPM 27, DP 25: Xylella fastidiosa, 2018

Conventional PCR(C-PCR) Master mix for the RST31/33 primer set

2x Master Mix DreamTaq (COD. 4472942) and PCR amplification conditions

Diagnostic training workshop Sampling and diagnostic tools for *Xylella fastidiosa* 19-22 September, 2017 - Locorotondo, Italy

6. CONVENTIONAL PCR (MINSAVAGE ET AL., 1994)

Primers RST31 and RST33, which generate a PCR product of 733 base pairs

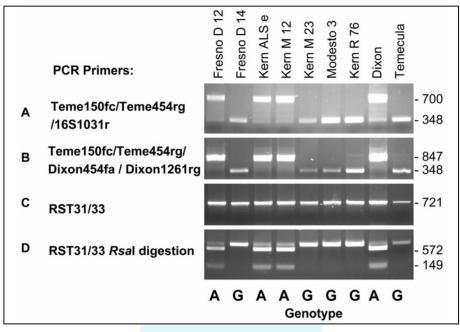
RST31 (forward): 5'-GCGTTAATTTTCGAAGTGATTCGATTGC-3 RST33 (reverse): 5'-CACCATTCGTATCCCGGTG-3'

Reagents	[Conc Sol.]	[Concentrated Sol.]		[Final Sol.]		Vol.for one tube	
Ultra pure water					9.5	μL	
2x Master Mix DreamTaq (COD. 4472942)	2	x	1	x	12.5	μL	
RST 31	10	μM	0.2	μM	0.5	μL	
RST 33	10	μΜ	0.2	μM	0.5	μL	
	PCR N	PCR Mix Volume				μL	
DNA Sample Volume					2	μL	
	Total	Total Volume total per reaction				μL	

PCR amplification conditions

94°C 5 min	1 cycle	
94°C 30 sec		
55°C 30 sec	35 cycles	
72°C 45 sec		
72°C 7 min	1 cycle	

Gel electrophoresis


Load 8-10 µl of PCR products on 1.2% Agarose gel in TAE 1X (STOCK 1lt 50X: Tris 242g, Acetic Acid 57 ml, EDTA 0,5 M-ph8 100ml) previously added of "GelRed Nucleic Acid Stain" (1µl/100ml of gel) (BIOTIUM, cod. 410003-0.5ml).

Diagnostics methods Master mix for the RST31/33 primer set *Rsa*I digestion of RST31-RST33 amplicons

- Restriction digestion:
- Aliquots (9 µl) of PCR products of the RST31-RST33 primer pair were digested in a 10.5-µl reaction containing 1X NEBuffer #4, 5 U of *RsaI* restriction endonuclease (New England BioLabs Inc., Ipswitch, MA) and 0.5 µl sterile deionized water.
- Reactions were incubated at 37°C for 3 h and then terminated by adding 2 µl of 6X blue gel loading dye (New England BioLabs Inc., Ipswitch, MA).
- Restriction fragment length polymorphisms (RFLP) were identified by electrophoresis in a 1% agarose gel, with all of digested samples being loaded into wells.
- Visualization and determination of size of separated DNA fragments was as previously described.

Diagnostics methods Master mix for the RST31/33 primer set *Rsa*I digestion of RST31-RST33 amplicons

- Polymerase chain reaction (PCR) amplifications of almond leaf scorch isolates from San Joaquin Valley of California using the A, three primer format, B, four primer format, and C, RST31-RST33 primer set.
- Panel D is the *Rsa*I digestion of RST31-RST33 amplicons. Numbers on the right are DNA fragment size in base pairs.

Conventional PCR(C-PCR) Master mix for the 272-1-int/272-2-int primer set Master mix composition, cycling parameters and amplicons for conventional PCR using the primers of Pooler and Hartung, 1995

The oligonucleotide primers used are:

272-1-int (forward): 5'-CTG CAC TTA CCC AAT GCA TCG-3'

272-2-int (reverse): 5'-GCC GCT TCG GAG AGC ATT CCT-3'

The master mix used for this PCR is described in Table 3.

Table 3. Master mix composition, cycling parameters and amplicons for conventional PCR using the primers of Pooler and Hartung (1995)

Reagents	Final concentration	
PCR grade water	_t	
PCR buffer (Invitrogen) ¹	1×	
dNTPs	200 µM	
MgCl ₂	1.5 mM	
Primer 272-1-int (forward)	0.4 µM	
Primer 272-2-int (reverse)	0.4 µM	
Taq DNA polymerase (Invitrogen) ¹	1.0 U	
DNA volume	2 µl bacterial suspension or DNA extract	
Cycling parameters		
Initial denaturation	94 °C for 1 min	
Number of cycles	40	
- Denaturation	94 °C for 1 min	
- Annealing	67 °C for 1 min	
- Elongation	72 °C for 1 min	
Final elongation	72 °C for 10 min	
Expected amplicons		

ISPM 27, DP 25: Xylella fastidiosa, 2018

Conventional PCR(C-PCR)

Master mix for the S-S-X.fas-0067-a-S-19/S-S-X.fas-1439-a-A-19; S-S-X.fas-0067a-S-19/S-S-X.fas-0838-a-A-21 and S-S-X.fas-0838-a-S-21/S-S-X.fas-1439-a-A-19 primer sets targeting 16S rRNA gene(Rodrigues *et al.*,2003)

- Set A:
- S-S-X.fas-0067-a-S-19 (forward): 5'-CGG CAG CAC ATT GGT AGT A-3'
- S-S-X.fas-1439-a-A-19 (reverse): 5'-CTC CTC GCG GTT AAG CTA C-3'
- Primer set A amplifies a product of 1348 bp.
- Set B:
- S-S-X.fas-0067-a-S-19 (forward): 5'-CGG CAG CAC ATT GGT AGT A-3'
- S-S-X.fas-0838-a-A-21 (reverse): 5'-CGA TAC TGA GTG CCA ATT TGC-3'
- Primer set B amplifies a product of 745 bp.
- Set C:
- S-S-X.fas-0838-a-S-21 (forward): 5'-GCA AAT TGG CAC TCA GTA TCG-3'
- S-S-X.fas-1439-a-A-19 (reverse): 5'-CTC CTC GCG GTT AAG CTA C-3'
- Primer set C amplifies a product of 603 bp.

Conventional PCR(C-PCR)

Master mix for the S-S-X.fas-0067-a-S-19/S-S-X.fas-1439-a-A-19; S-S-X.fas-0067a-S-19/S-S-X.fas-0838-a-A-21 and S-S-X.fas-0838-a-S-21/S-S-X.fas-1439-a-A-19 primer sets targeting 16S rRNA gene(Rodrigues *et al.*,2003)

Reagents	Final concentration
PCR grade water	_t
PCR buffer	1×
dNTPs	200 µM
MgCl ₂	1.5 mM
Primer (forward set A, or B or C)	0.2 µM
Primer (reverse set A, or B or C)	0.2 µM
Taq DNA polymerase (Invitrogen) ¹	2.0 U
DNA volume	2 µl bacterial suspension or DNA extract
Cycling parameters	
nitial denaturation	94 °C for 3 min
Number of cycles	30
- Denaturation	94 °C for 1 min
- Annealing	55 °C for 30 s
- Elongation	72 °C for 2 min
Final elongation	72 °C for 7 min
Expected amplicons	
Size	Primer set A: 1348 bp
	Primer set B: 745 bp
	Primer set C: 603 bp

[†] For a final reaction volume of 20 μl.

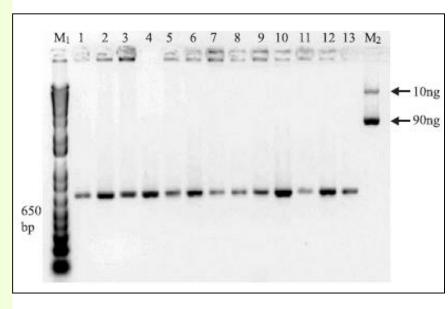
bp, base pairs; PCR, polymerase chain reaction.

ISPM 27, DP 25: Xylella fastidiosa, 2018

Conventional PCR(C-PCR)

Master mix composition, cycling parameters and amplicons for conventional PCR using the *gyrB* gene targeting primers of Rodrigues *et al.*,2003

- The gyrB primers used are:
- FXYgyr499 (forward): 5'-CAG TTA GGG GTG TCA GCG-3'
- RXYgyr907 (reverse): 5'-CTC AAT GTA ATT ACC CAA GGT-3'
- The gyrB primer set produces an amplicon of 429 bp.

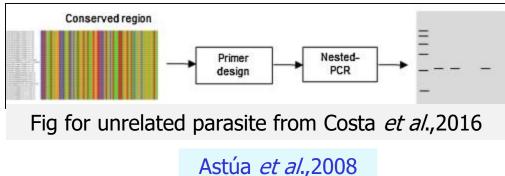

Reagents	Final concentration		
PCR grade water	_t		
PCR buffer	1×		
dNTPs	200 µM		
MgCl ₂	1.5 mM		
Primer FXYgyr499 (forward)	0.4 µM		
Primer RXYgyr907 (reverse)	0.4 µM		
Taq DNA polymerase (Invitrogen) ¹	2.5 U		
DNA volume	2 µl bacterial suspension or DNA extract		
Cycling parameters			
Initial denaturation	94 °C for 3 min		
Number of cycles	30		
- Denaturation	94 °C for 1 min		
- Annealing	60 °C for 1 min		
- Elongation	72 °C for 2 min		
Final elongation	72 °C for 7 min		
Expected amplicons			
Size	429 bp		

ISPM 27, DP 25: Xylella fastidiosa,2018

Diagnostics methods PCR amplify 16S-23S spacer region of rDNA Conventional PCR(C-PCR)

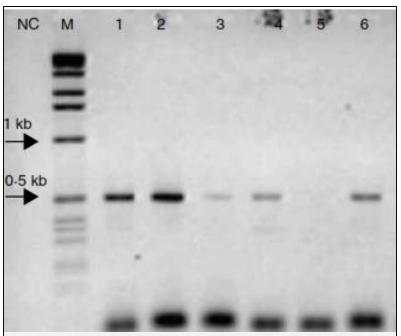
- Gel electrophoresis of the amplified rDNA internal transcribed spacer (ITS) region of 7 *Xylella fastidiosa* strains.
- M1- Molecular marker 1Kb Plus DNA.
- Ladder; 1-13 Xylella fastidiosa strains:
- 1-Citrus (X0); 2-4-Coffee (6738, 6740, 6755); 5-7-Grapevine (6068, 6752, 6753); 8-9- Mulberry (6744, 6745); 10-Almond (6746); 11-Elm (6748); 12- Ragweed (6749); 13-Periwinkle (6751);

• M2- Molecular marker pGEM.



A fragment of approximately 510 bases containing the 16S-23S rDNA region of all strains was obtained.

- Nested PCR is an effective method for detecting organisms or their products in environmental samples where the presence of low concentrations of the DNA targets and high concentrations of contaminants could inhibit DNA amplification.
- The detection of *X. fastidiosa* in insect samples is difficult as the number of bacterial cells present in insects is less than that present in samples of plant tissues, so the use of nested-PCR could be an efficient alternative assay.


- Samples were analysed using up to 3 different bacterial extraction methods and a 2-step, nested polymerase chain reaction (PCR) amplification using oligonucleotide primers specific to *X. fastidiosa*.
- Eleven of the 27 taxa could not be tested due to failure to amplify *X. fastidiosa* DNA in the positive controls, regardless of the extraction method.
- So, the nested PCR using the RST sets (primers RST3I/RST33)(genes RNA polymerase sigma factor) was highly sensitive and specific for detection of *X*. *fastidiosa* in potential insect vectors.

- DNA extracts from three of the oleander plants with high ELISA absorbance values were tested by nested PCR with primer pair 272-1/272-2 followed by the pair 272-1 int/272-2 int.
- 2. Two of the samples were positive for the bacterium and one of the PCR products was cloned and sequenced in both directions (GenBank Accession No. EU009615).

- The conditions for DNA amplification were 8 µl of extracted DNA, 1X PCR Buffer (Invitrogen, Carlsbad, CA, USA); 2 mmol l⁻¹ MgCl₂, 200 µmol l⁻¹ of each dNTP; 1.0 unit of *Taq* polymerase and 30 ng of each primer: CVC-1/272-2 int or 272-1/272-2.
- The final reaction mixture volume was 20 µl. The first primer set was used for plant and bacterial samples and the second was used for insect samples in the first round of the nested-PCR.
- The PCR cycling conditions were: 94°C for 2min, followed by 35 cycles of 94°C for 1 min, 62°C for 1 min, and 72°C for 90s.
- After a final extension at 72°C for 5 min, reactions were held at 4°C.
- For the nested PCR, 3 µl of the first PCR reaction was used as a template using the CVC-1/272-2 int primer set and it was amplified using the conditions for DNA amplification and PCR cycling programme described above.

- Detection of *Xylella fastidiosa* in fed sharpshooter by nested-PCR using the CVC-1/272-2 int primer.
- Lanes:
- M, Ladder 1kb DNA molecular size;
- NC, Negative Control (macerated head of healthy sharpshooter);
- Positive samples showed an amplified fragment of 500 bp(0.5 kb) indicated by arrow.

The use of Chelex 100 resin allowed a fast and efficient DNA extraction to be used in the detection of *X. fastidiosa* in citrus plants and insect vectors by PCR and nested-PCR assays, respectively.

Ciapina *et al.*,2004

Molecular Diagnosis of *Xylella* Conventional PCR(C-PCR) Multiplex PCR

- PCR-based diagnosis using conserved primers for X. fastidiosa strains (RST31/33) and also specific to X. fastidiaosa subsp. pauca (CVC1/272-2 int) were positive for all symptomatic tested olive leaf scorch samples (n= 8 of 9), but no was obtained using twigs from asymptomatic trees (n= 20).
- For DNA extraction and bacterial isolation, we used leaves and twigs collected from non-symptomatic sections of symptomatic branches.

Molecular Diagnosis of *Xylella* Conventional PCR(C-PCR) Multiplex PCR

- Primers CVC-1 and 272-2-int, which generate a PCR product of 500 base pairs, are used for the detection of *X. fastidiosa* causing Citrus Variegated Chlorosis (CVC).
- DNA fragments are used (Pooler & Hartung, 1995):
- CVC-1: 5'-AGATGAAAACAATCATGCAAA-3'
- 272-1-int: 5'-GCCGCTTCGGAGAGCATTCCT-3'.

Molecular Diagnosis of Xylella

PCR primers for *X. fastidiosa* strains and *X. fastidiosa* subsp. *pauca* **PCR amplifications for both primer sets**

- PCR was carried out by using the primers RST31 and RST33 that amplify a 733-bp DNA fragment of several strains of *X. fastidiosa* (Minsavage *et al.*, 1994), and CVC1/272-2-int for specific amplification of a 500-bp product of the citrus (Pooler & Hartung, 1995) and coffee (Coletta Filho & Machado, 2001) strains of the bacterium.
- The two primer pairs were used in the same reaction (multiplex PCR).

Molecular Diagnosis of Xylella

PCR primers for *X. fastidiosa* strains and *X. fastidiaosa* subsp. *pauca* **PCR amplifications for both primer sets**

- PCR amplification was performed in a 13 µL volume containing 1× master mix PCR (Dream Taq DNA polymerase), 10 pmol of each primer of sets
 RST31/RST33 (Minsavage *et al.*, 1993) and CVC1/272-2 int (Pooler & Hartung, 1995), and 3 µL of total DNA (100 ng/µL).
- Amplifications for both primer sets were conduced with the following setup:
- Initial denaturation step at 95°C for 5 min, 36 cycles at 95°C for 45 sec, 55°C for 45 sec, and 72°C for 1 min, with a final extension at 72°C for 5 min. The amplicons were separated on a 1% agarose gel.

Molecular Diagnosis of *Xylella* Conventional PCR(C-PCR) Gel electrophoresis of RST 31/33 primers

- Gel electrophoresis of RST 31/33 primers in olive samples inoculated with different stains of *Xylella fastidi* osa subsp. pauca.
- L= (GeneRuler 1Kb ladder marker -Fermentas). P and N represent positive and negative controls.
- Lanes 1 and 2 represent olive plants inoculated with PBS; 3 to 7 represents plants inoculated with *X*. *fastidiosa* strain 9a5c (ST13); 8 to 10 represent plants inoculated with strain MFG01 (ST16) isolate from olive plants with leaf scorch symptoms; 11 to 15 represent olive plants inoculate with strain PLS8 (ST71) from plum.

Bands represent samples infected by *X. fastidiosa* (positive samples).

Note: CVC1/272-2-int for specific amplification of a 500-bp product of the citrus and coffee strains of the bacterium(Marucci *et al.*,2003).

Conventional multiplex PCR Mainly used for assignment of an isolate to *Xylella*

fastidiosa subsp. *fastidiosa*, *multiplex* or *sandyi*

- The target sequences are a gene that encodes a putative methyltransferase of the restriction/methylation system for the XF1968 primers, a gene that encodes a putative fimbrial protein for the XF2542 primers (these were assigned to the CVC *X*. *fastidiosa* 9a5c strain) and a gene that encodes an intergenic region between the genes coding for a conserved hypothetical protein and a glycine cleavage H protein for the ALM primers (this target area was assigned to the genome of the ALS strain M12).
- Amplicon size:
- 638 bp with subsp. *sandyi*, *multiplex*,
- 521 bp with subsp. *multiplex*, and
- 412 bp with subsp. *fastidiosa, multiplex*.

Conventional multiplex PCR

Mainly used for assignment of an isolate to Xylella fastidiosa subsp. fastidiosa, multiplex or sandyi

Primers:

- Oligonucleotides for subsp. *multiplex, sandyi*:
- Forward primer XF1968-L 5'-GGAGGTTTACCGAAGACAGAT-3';
- reverse primer XF1968-R 5'-ATCCACAGTAAAACCACATGC-3'.
- Oligonucleotides for subsp. *multiplex*.
- forward primer ALM1 5'-CTGCAGAAATTGGAAACTTCAG-3';
- reverse primer ALM2 5'-GCCACACGTGATCTATGAA-3'.
- Oligonucleotides for subsp. *fastidiosa, multiplex*:
- forward primer XF2542-L 5'-TTGATCGAGCTGATGATCG-3';
- reverse primer XF2542-R 5'-CAGTACAGCCTGCTGGAGTTA-3'.

Conventional multiplex PCR

Mainly used for assignment of an isolate to *Xylella fastidiosa* subsp. *fastidiosa*, *multiplex* or *sandyi*

- DNA Extraction Method:
- For pure cultures, a single colony of a fresh pure culture is suspended in 0.9 mL of PCR-grade water; lysis should be performed at 100°C for 5 min.
- Extracts of total nucleic acids can be stored at 4°C for immediate use or at -20°C for further use.

Conventional multiplex PCR Mainly used for assignment of an isolate to *Xylella*

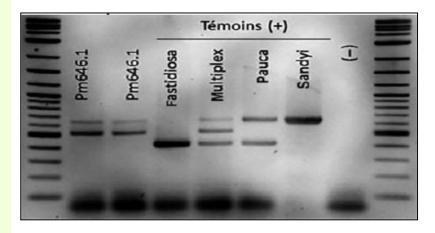
fastidiosa subsp. *fastidiosa, multiplex* or *sandyi*

Master Mix:

Reagent	Working concentration	Volume per reaction (µL)	Final concentration	
Molecular-grade water*	N.A.	10.25	N.A.	
PCR buffer (Promega)	CR buffer (Promega) 10x 2.5		1x	
MgCl ₂	50 mM	1.25	2.5 mM	
dNTPs	20 mM	1	0.8 mM	
Forward primers (XF1968- L, ALM1, XF2542-L) for each	20 µM	1.25 for each (total 3.75)	1 µM	
Reverse primers (XF1968- R, ALM2, XF2542-R) for each	20 µM	1.25 for each (total 3.75)	1 µM	
Promega Taq DNA polymerase	5 U μL ⁻¹	0.5	0.1 U μL ⁻¹	
Subtotal		23		
Genomic DNA extract		2		
Total		25		

*Molecular-grade water should preferably be used, or prepared purified (deionized or distilled), sterile (autoclaved or 0.45-µm filtered) and nuclease-free.

N.A.: not applicable, not available


Conventional multiplex PCR

Mainly used for assignment of an isolate to *Xylella fastidiosa* subsp. *fastidiosa*, *multiplex* or *sandyi*

- PCR conditions:
- 95°C for 3 min, 40 cycles (95°C for 30 s, 55°C for 30 s and 72°C for 30 s) and a final step at 72°C for 5 min before cooling at 15°C.
- NIC (negative isolation control) and NAC (negative amplification control) should produce no amplicons.
- PIC (positive isolation control) and PAC (positive amplification control) should produce amplicons of the relevant size.

Conventional multiplex PCR Mainly used for assignment of an isolate to *Xylella fastidiosa* subsp. *fastidiosa, multiplex* or *sandyi*

- Electrophoretic analysis of PCR amplicons obtained from samples of *Polygala myrtifolia* (Pm646.1) by Hernandez-Martinez *et al.*,2006.
- It should be noted that although the test is not recommended for the detection of *X. fastidiosa* subsp. *pauca*, some sequence type of subsp. *pauca* can produce bands with this PCR.

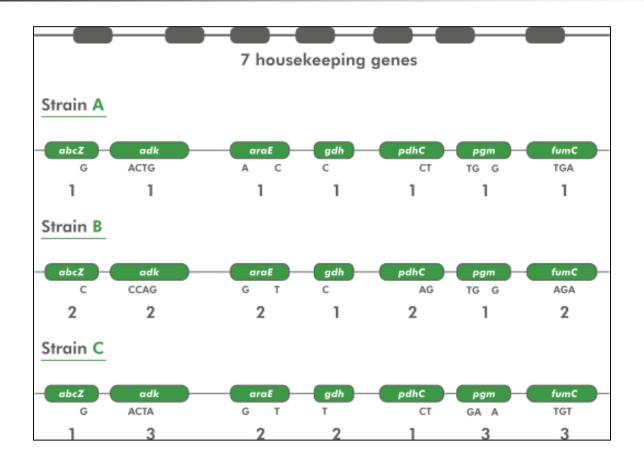
Genotype identification of bacteria MLST vs MLSA

 Both methods depend on the sequencing of multiple (usually four to eight) housekeeping genes, i.e., genes conferring a basic metabolic function.

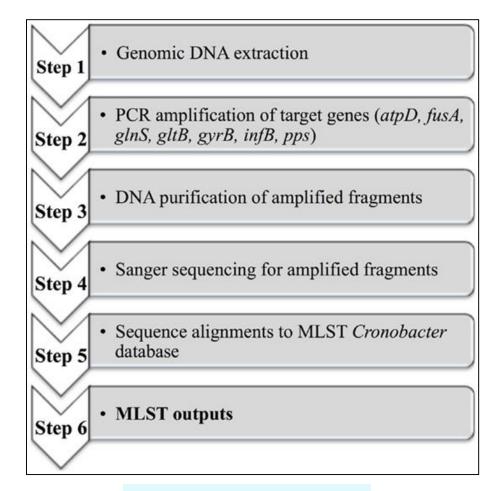
Multilocus Sequence Typing (MLST):

- MLST is usually applied to strains that belong to a well-defined species. Here a sequence of multiple (usually 5-7) housekeeping genes(HKGs) is analysed.
- Multilocus Sequence Analysis (MLSA):
- MLSA is more often used when species boundaries are not well known and MLSA data are used to improve species descriptions.

PAMBD.org;..


Genotype identification of bacteria MLST vs MLSA

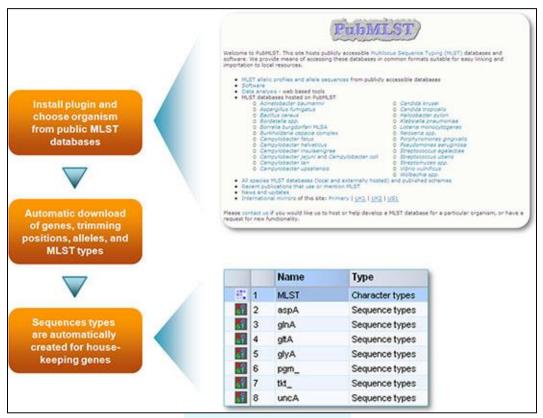
- MLSA relies on the comparison of partial DNA sequences of each gene or of concatenated sequences among strains, while
- MLST is based on the analysis of the combination of alleles at each locus, defining a sequence type (ST).
- MLSA provides a framework for species definition and allows the identification of species by electronic taxonomy, while
- MLST usually allows strains to be distinguished below the species level.


Identification of bacteria Multilocus Sequence Typing (MLST) Scheme

- Briefly, in MLST each allele of a given gene is assigned a number, so different strains of bacteria can be characterized by a series of numbers, representing one allele for each locus analyzed.
- The combination of the allele numbers at each locus determine the so called sequence type (ST) for each analyzed strain.
- For each house-keeping gene, the different sequences present within a bacterial species are assigned as distinct alleles and, for each isolate, the alleles at each of the seven loci define the allelic profile or sequence type (ST).

Genotype identification of bacteria Multilocus Sequence Typing (MLST) Scheme

Identification of bacteria Multilocus Sequence Typing (MLST) Scheme


Yand and Fanning,2015

Identification of bacteria Multilocus Sequence Typing (MLST) Scheme Analysis of MLST sequences in BIONUMERICS

- Download BIONUMERICS software. BIONUMERICS software is widely used for the storage and analysis of MLST sequences.
- BIONUMERICS automatically analyses batches of sequence trace files, connects to online MLST databases, retrieves corresponding allele numbers, sequence types as well as available clonal complex information.
- BIONUMERICS can process hundreds of isolates in only seconds. Results are stored in the database and are available for statistical and population analysis, clustering, partitioning, identification using BIONUMERICS' impressive set of analysis tools.

Identification of bacteria Multilocus Sequence Typing (MLST) Scheme Analysis of MLST sequences in BIONUMERICS

Setup scheme:

Identification of bacteria Multilocus Sequence Typing (MLST) Scheme Analysis of MLST sequences in BIONUMERICS

Workflow scheme:

Fully automatic processing workflow

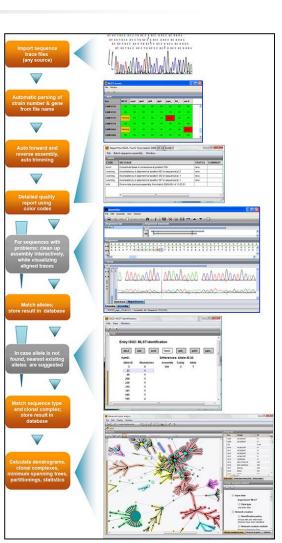
•Automatic import and assembly of batches of sequencer trace files from various sources (AB, Beckman, Amersham, FASTA); file names are parsed into strain and gene information using a parsing definition.

•Consensus sequences are automatically trimmed using start and stop signatures and placed in the right direction.

•When the batch assembly is finished, an overview report is shown, listing status of each strain/gene combination.

•Double-click on a problem contig to display the detailed information window.

•Double-click on a particular problem to open the Assembler with the problem position selected.


•For each problem position, show nearest existing alleles and suggested bases - easy verification with chromatograms.

•Alleles and MLST types can be identified by real-time connection to MLST server database, or by comparing to locally stored allele database (faster). In the latter case, local database can be updated automatically at startup.

•Allele and MLST type information for own strains is stored in the database and can be updated at any time for a selection of strains. BIONUMERICS will prompt you for any change in allele/MLST type definition that has occurred in the MLST server database.

•Calculate population modelling networks in the finest and most comprehensive cluster analysis application available today, using standard or custom priority rules and with branch significance support indication.

•Calculate and display partitioning for clonal complexes and use BIONUMERICS' rich set of statistics tools.

1. Multilocus sequence typing (MLST) Conventional/traditional MLST scheme using housekeeping genes Drawbacks

- This MLST scheme relies on sequence analysis of seven housekeeping genes which are required for basic cellular maintenance.
- Housekeeping genes are usually relatively conserved, making them good candidates for use in evolutionary phylogenetic analyses of distantly related groups.
- The seven concatenated HKGs (series of housekeeping genes) which were used to delineate *fastidiosa* isolates in differnet species are:

leuA; petC; malF; cysG; holC; nuoL; gltTX (PubMLST).

 One drawback to using housekeeping genes is that they may not provide enough variability to differentiate closely related isolates.

Parker et al., 2012; PubMLST: MLST allelic profiles and sequences

2. MLSA-E, an alternative method for discriminating between closely related *X. fastidiosa* Using environmentally mediated genes

- An alternative for discriminating between closely related X. fastidiosa isolates is to perform MLSA of genes influenced by environmental factors, termed environmentally mediated genes.
- Environmentally mediated genes are involved in adaptation to environmental changes and are usually subject to positive selection pressure, so they should have greater sequence variability than conserved housekeeping genes under stabilizing selection pressure.

1. Multilocus sequence typing (MLST) Methods Using 7 housekeeping genes

- The MLSA-MLST method is used for the identification of Xylella fastidiosa's sub-species.
- This method involves the analysis of partial sequences of 7 housekeeping genes (cysG, gltT, holC, leuA, malF, nuoL and petC) from the bacterium's genome.
- This multi-loci analysis is a reference method in taxonomy research and allows determining the phylogenetic position of strains and naming them.
- These housekeeping genes are highly maintained within the X.
 fastidiosa species but different strains have allele variants.
- In this method, an allele number is allocated to each housekeeping gene and these 7 numbers define some kind of an identity document called the Sequence Type (ST).

Multilocus sequence typing (MLST) Methods Using 7 housekeeping genes

Gene	Gene function	Biochemical function	Temecula (PD0001) gene position	M12 (ALS0299) gene position	9a5c (CVC0018) gene postion
leuA	2-isopropylmalate synthase	amino acid biosynthesis	PD1047	Xfasm_1205	XF1818
petC	ubiquinol cytochrome C oxidoreductase, cystochrome C1 subunit	electron transport	PD1775	Xfasm_1943	XF0910
malF	ABC transporter sugar permease	transport of carbohydrates	PD1465	Xfasm12_1606	XF2447
cysG	siroheme synthase	biosynthesis of heme, porphyrin	PD1840	Xfasm12_2018	XF0832
<i>bolC</i>	DNA polymerase III holoenzyme, chi subunit	replication	PD0104	Xfasm12_0112	XF0136
nuoL	NADH-ubiquinone oxidoreductase, NQO12 subunit	aerobic respiration	PD0259	Xfasm12_0280	XF0316
gltT	glutamate symport protein	transport of amino acids	PD1516	Xfasm12_1656	XF0656

Multilocus sequence typing (MLST) is a technique in molecular biology for the typing of multiple loci. Approximately 450-500 bp internal fragments of each gene are used. For each housekeeping gene, the different sequences present within a bacterial species are assigned as distinct alleles and, for each isolate, the alleles at each of the loci define the allelic profile or sequence type (ST).

Janse et al., 2012; Wikipedia, 2019

Multilocus sequence typing (MLST) Methods Using 7 housekeeping genes

- The sequences for the primers are as follows:
- forward primer leuA-for 5'-GGTGCACGCCAAATCGAATG-3'; reverse primer leuArev 5'-GTATCGTTGTGGCGTACACTG-3';
- forward primer petC-for 5'-GCTGCCATTCGTTGAAGTACCT-3'; reverse primer petC-rev 5'-GCACGTCCTCCCAATAAGCCT-3';
- forward primer malF-for 5'-TTGCTGGTCCTGCGGTGTTG-3'; reverse primer malFrev 5'-GACAGCAGAAGCACGTCCCAGAT-3';
- forward primer cysG-for 5'-GCCGAAGCAGTGCTGGAAG-3'; reverse primer cysGrev 5'-GCCATTTTCGATCAGTGCAAAAG-3';
- forward primer holC-for 5'-ATGGCACGCGCCGACTTCT-3'; reverse primer holCrev 5'-ATGTCGTGTTTGTTCATGTGCAGG-3';
- forward primer nuoL-for 5'-TAGCGACTTACGGTTACTGGGC-3'; reverse primer nuoL-rev 5'-ACCACCGATCCACAACGCAT-3';
- forward primer gltT-for 5'-TCATGATCCAAATCACTCGCTT-3'; reverse primer gltTrev 5'-ACTGGACGCTGCCTCGTAAACC-3'.
- The workflow is described in the PubMLST *Xylella fastidiosa* database (http://pubmlst.org/xfastidiosa).
 EPPO,2016

Multilocus sequence typing (MLST) Some more housekeeping genes and specific primers used for multilocus sequence typing (MLST) in *X. fastidiosa*

Gene	Position	Forward primer	Reverse primer	Gene function
holC ⁸	XF0136	GATTTCCAAACCGCGCTTTC	TCATGTGCAGGCCGCGTCTCT	DNA polymerase III holoenzyme, chi subunit
rfbD ^a	XF0257	TTTGGTGATTGAGCCGAGGGT	CCATAAAOGGCCGCTTTC	dTDP-4-dehydrorhamnose-3, 5-epimerase
nuoLa	XF0316	CATTATTGCCGGATTGTTAGG	GCGGGAAACATTACCAAGC	NADH-ubiquinone oxidoreductase, NQO12 subunit
nuoNa	XF0318	GGGTTAAACATTGCCGATCT	CGGGTTCCAAAGGATTCCTAA	NADH-ubiquinone oxidoreductase, NQO14 subunit
gltT ^a	XF0656	TTGGGTGTGGGGTACGTTGCTG	CGCTGCCTCGTAAACCGTTGT	Glutamate symport protein
cysG ^a	XF0832	GGCGGCGGTAAGGTTG	GCGTATGTCTGTGCGGTGTGC	cysG Siroheme synthase
petC ^a	XF0910	CTGCCATTCGTTGAAGTACCT	CGTCCTCCCAATAAGCCT	Ubiquinol cytochrome c axidoreductase
pilU ^a	XF1632	CAATGAAGATTCACGGCAATA	ATAGTTAATGGCTCCGCTATG	Twitching motility protein
leuA ^a	XF18188	GGGCGTAGACATTATCGAGAC	GTATOGTTGTGGCGTACACTG	2-Isopropylmalate synthase
lacF ^a	XF2447	TTGCTGGTCCTGCGGTGTTG	CCTCGGGTCATCACATAAGGC	ABC transporter sugar permease
ddh	XF0257	TTTGGTGATTGAGCCGAGGGT ^a	TCCATAAACGGCGCCTTC	dTDP-4-dehydrorhamnose-3, 5-epimerase
cysG ^b	XF0832	GGCGGCGGTAAGGTTG ^a	GCATATGTCTGTGCGGTGTGC	cysG Siroheme synthase
holC ^c	XF0136	ATGGCACGCGCCGACTTCT	ATGTCGTGTTTGTTCATGTGCAGG	DNA polymerase III holoenzyme, chi subunit
nuoL ^c	XF0316	TAGCGACTTACGGTTACTGGGC	ACCACCGATCCACAACGCAT	NADH-ubiquinone oxidoreductase, NQO12 subunit
gltT ^C	XF0656	TCATGATCCAAATCACTCGCTT	ACTGGACGCTGCCTOGTAAACC	Glutamate symport protein
cysG ^c	XF0832	GCCGAAGCAGTGCTGGAAG	GCCATTTTCGATCAGTGCAAAAG	cysG Siroheme synthase
petCc	XF0910	GCTGCCATTOGTTGAAGTACCT	GCACGTCCTCCCAATAAGCCT	Ubiquinol cytochrome c axidoreductase
leuAc	XF18188	GGTGCACGCCAAATCGAATG	GTATCGTTGTGGCGTACACTG	2-isopropyimalate synthase
malF ^C	XF2447	TTGCTGGTCCTGCGGTGTTG	GACAGCAGAAGCACGTCCCAGAT	ABC transporter sugar permease
pilUc	XF1632	COGTAATCACAACTCAACAGGACA	CTGCGAATCAGCATGGCGTA	Twitching motility protein
acvBd	PD_1902	ACAGTATCGCCGTCGAAGTGATGA	CATGCATACRGCGATGYTTCCGAT	Virulence protein: suggested to regulate pathogenicity
copBd	PD_0101	ATGAACACCCGTACCTGGTTCGTA	ATTTAGTCTCCACCATGAGCCGCA	Copper resistance protein B precursor
cvaCad	PD_0215	TGCGTGAATTRACATTGACCG	CCTAGTCTGCGGCTTAAGCAGATT	Colicin V precursor
fimAd	PD_0062	CCCAGTGCGTCGTTATCGATTATTGGT	TTTYGYACTCTCAAGCATOGCATC	Fimbrial subunit precursor
gaa ^d	PD_0315	TGAGAGCTGCYGATGTTCCAATGA	ACAGCTTCTGGCAAGAACAAGCAC	Glutaryl-7-aminocephalosporanic acid acylase precurso
pglAad	PD_1485	TAGTGCTGGCCTAACGATGTYGGT	CCGTATCAGCAACCACATGGAAGT	Polygalacturonase precursor
pilAd	PD_1924	ATCGCKCTGCCYATGTACCAAA	CAGCATTGATCGTRTTGCTGTRTG	Fimbrial protein
rpfF ^d	PD_0407	GCGCTCCATAGTTCGGAGTGATTT	ATGTCCGCTGTACATCCCATTCCT	Regulator of pathogenicity factors
xadAa ^d	PD_0731	TGGGAGGTCAAAGYACTGOCATCA	GCATTGGCAGCAACACTOGAATCA	Outer membrane afimbrial adhesin
gltT ^e	PD1516	TTTTTCAGGGGTGTCGCGC	TTCCAACGTTACTGGACGCT	Glutamate symport protein
cysG ^e	PD1840	CCAAACATAGAAGCACGCCG	CGTATGTCTGTGCGGTGTG	Siroheme synthase
leuA ^e	PD1047	GGCCAGTGCTGTGTTTTGTT	GGGCTACTTGCTGGAGGAAG	2-Isopropyimalate synthase
lacF ^e	PD1465	TTCTTTGGTGGGTTGGGTGT	CACACAGCATCAACGTCGTC	ABC transporter sugar permease

Baldi and La Porta, 2017

^eHarris and Balci (2015)

Multilocus sequence typing (MLST) Primers

forward primers	reverse primer
leuA-for 5'-GGTGCACGCCAAATCGAATG-3'	leuA-rev 5'-GTATCGTTGTGGCGTACACTG-3';
petC-for 5'-GCTGCCATTCGTTGAAGTACCT-3'	petC-rev 5'-GCACGTCCTCCCAATAAGCCT-3'
malF-for 5'-TTGCTGGTCCTGCGGTGTTG-3'	malF-rev 5'-GACAGCAGAAGCACGTCCCAGAT-3'
cysG-for 5'-GCCGAAGCAGTGCTGGAAG-3'	cysG-rev 5'-GCCATTTTCGATCAGTGCAAAAG-3'
holC-for 5'-ATGGCACGCGCCGACTTCT-3'	holC-rev 5'-ATGTCGTGTTTGTTCATGTGCAGG-3'
nuoL-for 5'-TAGCGACTTACGGTTACTGGGC-3'	nuoL-rev 5'-ACCACCGATCCACAACGCAT-3'
gltT-for 5'-TCATGATCCAAATCACTCGCTT-3'	gltT-rev 5'-ACTGGACGCTGCCTCGTAAACC-3'

The workflow is described in the PubMLST *Xylella fastidiosa* database (http://pubmlst.org/xfastidiosa).

Multilocus sequence typing (MLST) Methods DNA extraction method

- Nucleic acid source: pure culture plant extract or insects.
- For pure cultures, a single colony of a fresh pure culture is suspended in 0.9 mL of PCR-grade water; lysis should be performed at 100°C for 5 min.
- Extracts of total nucleic acids can be stored at 4°C for immediate use or at -20°C for further use.

Multilocus sequence typing (MLST) Methods Master mix

Reagent	Working concentration	Volume per reaction (µL)	Final concentration
Molecular-grade water*	N.A.	36.2	N.A.
PCR buffer (Invitrogen)	10x	5	1x
MgCl ₂	50 mM	1.5	1.5 mM
dNTPs	20 mM	0.5	0.2 mM
Forward primers (leuA-for, petC-for, malF-for, cysG- for, holC-for, nuoL-for, gltT-for)	20 µM	0.75	0.3 μM
Reverse primers (leuA-rev, petC-rev, malF-rev, cysG- rev, holC-rev, nuoL-rev, gltT-rev)	20 µM	0.75	0.3 µM
DNA Polymerase Platinum (Invitrogen)	5 U μL ⁻¹	0.3	0.03 U μL ⁻¹
Subtotal		45	
Genomic DNA		5	
Total		50	

*Molecular-grade water should preferably be used, or prepared purified (deionized or distilled), sterile (autoclaved or 0.45-µm filtered) and nuclease-free.

N.A.: not applicable, not available

Multilocus sequence typing (MLST) Methods Master mix

- Each reaction mixture contained 5 to 15 ng/µl of DNA template, 1x buffer solution (Promega), 1 mM deoxynucleotide triphosphates, 1 µM of each primer, and 5U of *Taq* polymerase (Promega) for a total 30-µl reaction volume.
- The thermocycler (Eppendorf Mastercycler) reaction conditions were an initial denaturation step at 94°C for 3 min, followed by 30 cycles of 94°C for 30 seconds, 60°C for 30 seconds for primer annealing, and an extension period at 72°C for 1 min.
- The final step was an extension period at 72°C for 5 min.
- For genes over 1,000 bp, the extension time was lengthened from 1 min to 90 seconds. Schuenzel *et al.*,2005

Multilocus sequence typing (MLST) Methods PCR conditions (for pure cultures)

- 95°C for 3 min, 35 cycles of (95°C for 30 s, 65°C for 30 s and 72°C for 60 s) and a final step of 72°C for 10 min If the amplicons are of good quality and at the expected size, a template should be sent for sequencing with reverse and forward primers.
- The results of sequencing should be compared with sequences available on http://pubmlst.org/xfastidiosa/ (Scally *et al.*,2005).
- NIC (negative isolation control) and NAC (negative amplification control) should produce no amplicons.
- PIC (positive isolation control) and PAC (positive amplification control) should produce amplicons of the relevant size.

Multilocus sequence typing (MLST) Methods Sequencing

- MLST directly measures the DNA sequence variations in a set of housekeeping genes and characterizes strains by their unique allelic profiles.
- The principle of MLST is simple: the technique involves PCR amplification followed by DNA sequencing.
- Nucleotide differences between strains can be checked at a variable number of genes depending on the degree of discrimination desired.

Identification of bacteria Multilocus Sequence Typing (MLST) Scheme

- Briefly, in MLST each allele of a given gene is assigned a number, so different strains of bacteria can be characterized by a series of numbers, representing one allele for each locus analyzed.
- The combination of the allele numbers at each locus determine the so called sequence type (ST) for each analyzed strain.
- For each house-keeping gene, the different sequences present within a bacterial species are assigned as distinct alleles and, for each isolate, the alleles at each of the seven loci define the allelic profile or sequence type (ST).

Identification of bacteria Multilocus Sequence Typing (MLST) Scheme

- Most bacterial species have sufficient variation within house-keeping genes to provide many alleles per locus, allowing billions of distinct allelic profiles to be distinguished using seven house-keeping loci.
- For example, an average of 30 alleles per locus allows about 20 billion genotypes to be resolved.
- MLST is based on the well established principles of multilocus enzyme electrophoresis, but differs in that it assigns alleles at multiple house-keeping loci directly by DNA sequencing, rather than indirectly via the electrophoretic mobility of their gene products.

Multilocus sequence typing (MLST) Interpretation of sequencing results: A table of correspondence between Sequence Types (ST) and subspecies is presented.

ST Ya Ya <th< th=""><th></th></th<>	
2 1 1 4 1 1 1 fastidiosa Yuan et a 3 1 1 1 2 1	ence
3 1 1 20 1 1 1 fastidiosa Yuan et a	ıl. (2010)
	ıl. (2010)
	1. (2010)
4 1 1 1 4 1 1 1 fastidiosa Yuan et a	1. (2010)
5 2 2 2 2 2 2 2 2 2 3 sandyi Yuan et a	1. (2010)
6 3 3 3 3 3 multiplex Yuan et a	1. (2010)
7 3 3 3 7 3 3 3 <u>3</u> multiplex Yuan et a	ıl. (2010)
8 3 3 5 5 4 3 7 multiplex Nunney et	al. (2013)
9 3 3 5 5 4 3 4 multiplex Yuan et a	1. (2010)
10 5 4 3 3 6 3 5 multiplex Yuan et a	d. (2010)
11 7 7 7 9 10 8 8 pauca Nunney et	al. (2012)
12 7 7 7 9 13 8 8 pauca Nunney et	al. (2012)
13 7 6 7 9 10 7 8 pauca Yuan et a	1. (2010)
14 8 8 8 11 12 9 9 pauca Yuan et a	1. (2010)
15 5 3 3 3 4 3 5 multiplex Nunney et	al. (2013)
16 7 6 8 10 11 8 8 pauca Nunney et	al. (2012)
17 1 10 12 18 10 1 fastidiosa Nunney et :	al. (2014b)
18 9 1 9 13 14 5 10 fastidiosa Nunney et	al. (2012)
19 10 1 10 14 15 11 1 fastidiosa Nunney et	al. (2012)
20 1 1 10 12 17 11 11 fastidiosa Nunney et	al. (2012)
21 10 1 10 14 15 11 12 fastidiosa Nunney et :	al. (2014a)
22 3 3 5 12 4 3 3 multiplex Nunney et	al. (2012)
23 3 3 5 3 6 3 3 multiplex Nunney et	al. (2013)
24 3 3 5 3 4 3 7 multiplex Nunney et	al. (2013)
25 3 3 3 17 3 3 3 multiplex Nunney et	al. (2013)
26 5 3 3 6 3 5 multiplex Nunney et	al. (2013)
27 6 3 5 6 7 3 7 multiplex Nunney et	al. (2013)
28 6 3 5 18 7 4 7 multiplex Nunney et	al. (2013)
29 4 3 6 18 5 4 3 morus Nunney et :	al. (2014b)
30 4 5 6 8 5 4 3 morus Nunney et a	al. (2014b)
31 4 3 6 18 8 6 3 morus Nunney et :	al. (2014b)
32 4 3 5 12 4 4 3 multiplex Nunney et	al. (2013)
33 11 9 14 15 19 13 10 Nunner (2012)/Jac (2012)/Ja	ques et al. 16)
34 3 3 3 3 3 6 multiplex Nunney et	
35 3 10 3 3 3 3 multiplex Nunney et	al. (2013)
36 5 3 5 19 6 3 5 multiplex Nunney et	al. (2013)

		-						I		
	ST	leuA	petC	malF	cysG	holC	Tour	gltT	clonal complex	reference
	37	3	3	5	21	4	3	3	multiplex	Nunney et al. (2013).
	38	3	3	5	16	4	3	7	multiplex	Nunney et al. (2013)
	39	3	3	5	19	4	3	7	multiplex	Nunney et al. (2013)
	40	6	3	5	18	7	3	7	multiplex	Nunney et al. (2013)
	41	3	3	5	18	9	3	3	multiplex	Nunney et al. (2013)
	42	6	3	5	12	4	3	3	multiplex	Nunney et al. (2013)
	43	3	3	5	18	4	3	7	multiplex	Nunney et al. (2013)
	44	3	3	5	5	6	3	4	multiplex	Nunney et al. (2013)
	45	3	3	5	3	4	3	3	multiplex	Nunney et al. (2013)
	46	5	3	3	3	6	3	3		Nunney et al. (2013)
	47	13	1	10	23	20	5	1	multiplex fastidiosa	Nunney et al. (2012)
	48	3	3	12	3	6	3	3		Nunney et al. (2012)
	49	3	3	5	3	6	3	7	multiplex multiplex	Nunney et al. (2013) Nunney et al. (2013)
	50	3	11	13	22	21	14	13		Nunney et al. (2013)
}	51	3	3	5	3	4	15	3	multiplex	
	52	10	1	-	14	18	<u> </u>	1	multiplex	Nunney et al. (2013)
	53	7	6	10 16		10	10 16	14	fastidiosa	Nunney et al. (2012)
					24				pauca	Nunney et al. (2014a)
	54	11	9	11	25	19	12	1	fastidiosa/sandyi	Nunney et al. (2012)/Jacques et al. (2016)
	55	1	1	10	12	18	10	10	fastidiosa	Nunney et al. (2012)
	56	11	9	11	15	17	12	10	fastidiosa/sandyi	Nunney et al. (2012)/Jacques et al. (2016)
	57	1	1	10	12	18	11	11	fastidiosa	Nunney et al. (2012)
	58	6	3	5	12	4	3	7	multiplex	Nunney et al. (2013)
	59	9	1	9	13	14	5	1	fastidiosa	Coletta-Filho et al. (2017)
	60	9	1	1	13	14	5	1	fastidiosa	Coletta-Filho et al. (2017)
	61	11	9	11	15	16	12	10	fastidiosa/sandyi	Nunney et al. (2014a)/Jacques et al.
	62	4	3	6	18	5	6	3	morus	(2016) Nunney et al. (2014a)
	63	5	6	3	3	6	3	5	multiplex	Coletta-Filho et al. (2017)
	64	7	7	7	9	10	7	8	-	Coletta-Filho et al. (2017)
	65	7	6	7	9	10	8	8	pauca	Coletta-Filho et al. (2017)
	66	7	8	8	10	11	8	8	pauca	Coletta-Filho et al. (2017)
	67	5	3	8	3	12	3	5	pauca	Coletta-Filho et al. (2017)
	68	14	8	8	11	12	9	8	multiplex	Coletta-Filho et al. (2017) Coletta-Filho et al. (2017)
		14	L	<u> </u>	—		<u> </u>	° 8	pauca	
	69 70	14	6 7	7	9 11	23 22	17 9	8	pauca	Coletta-Filho et al. (2017) Coletta-Filho et al. (2017)
		14 5		8					pauca	
		1)	8	8	11	12	9	9	pauca	Coletta-Filho et al. (2017)
	71	12	12	15	26	24	18	1		Denancé et al. (2017)

Multilocus sequence typing (MLST) Interpretation of sequencing results: A table of correspondence between Sequence Types (ST) and subspecies is presented. Multilocus sequence typing (MLST) Interpretation of sequencing results: A table of correspondence between Sequence Types (ST) and subspecies is presented.

	ST	leuA	petC	malF	chaG	holC	nuoL	ghT	clonal complex	reference
	73	7	6	8	27	10	16	8	pauca	Loconsole et al. (2016)/Coletta-Filho et al. (2017)
Γ	74	7	6	8	28	25	16	8	pauca	Jacques et al. (2016)
	75	9	1	10	29	1	19	1	fastidiosa	Jacques et al. (2016)
	76	12	13	15	26	24	18	1	sandyi	Loconsole et al. (2016)/Denancé et al. (2017)
	77	1	1	6	30	26	5	1	fastidiosa	Bergsma-Vlami et al. (2017)
Γ	78	7	6	7	9	23	8	8	Pauca	Tolocka et al. (2017)
	79	3	3	3	26	3	3	3	multiplex	Denancé et al. (2017)
	80	7	6	17	31	10	16	15	pauca	B. Landa pers. comm.
	81	3	3	3	32	3	3	3	multiplex	B. Landa pers. comm.

Multilocus sequence typing (MLST) Methods Using housekeeping and non-housekeeping genes

PCR conditions:

95°C for 3 min, 35 cycles of (95°C for 30 s, 65°C for 30 s and 72°C for 60 s) and a final step of 72°C for 10 min If the amplicons are of good quality and at the expected size, a template should be sent for sequencing with reverse and forward primers.

The results of sequencing should be compared with sequences available

on http://pubmlst.org/xfastidi osa/ (Scally *et al.*,2005).

Gene	Function	Biochemical function	Primer sequences (forward/reverse)	Gene length/ MLST fragmen used* (bp)
holC	DNA polymerase III holoenzyme, chi subunit	Replication	5'-GATTTCCAAACCGCGCTTTC-3' 5'-TCATGTGCAGGCCGCGTCTCT-3'	379 / 379
nuoL	NADH-ubiquinone oxidoreductase, NQO12 subunit	Aerobic respiration	5'-CATTATTGCCGGATTGTTAGG-3' 5'-GCGGGAAACATTACCAAGC-3'	1,821/55
gltT	Glutamate symport protein	Transport of amino acids	5'-TTGGGTGTGGGTACGTTGCTG-3' 5'-CGCTGCCTCGTAAACCGTTGT-3'	951/654
cysG	Siroheme synthase	Biosynthesis of heme, porphyrin	5'-GCCGGCCGTAAGGTTG-3' 5'-GCGTATGTCTGTGCGGTGTGC-3'	1,170/60
petC	Ubiquinol cytochrome c oxidoreductase, cytochrome c1 subunit	Electron transport	5'-CTGCCATTCGTTGAAGTACCT-3' 5'-CGTCCTCCCAATAAGCCT-3'	533/533
leuA	2-Isopropylmalate synthase	Amino acid biosynthesis	5'-GGGCGTAGACATTATCGAGAC-3' 5'-GTATCGTTGTGGCGTACACTG-3'	1,218/70
lacF	ABC transporter sugar permease	Transport of carbohydrates	5'-TTGCTGGTCCTGCGGTGTTG-3' 5'-CCTCGGGTCATCACATAAGGC-3'	730/730
RNA polymerase	RNA polymerase sigma-70 factor	Replication	5'GCGTTAATTTTCGAAGTGATTCGATTGC-3' 5'-CACCATTCGTATCCCGGTG-3	733
HL	HL protein	Hypothetical protein	5'-AAGGCAATAAACGCGCACTA-3' 5'-GGTTTTGCTGACTGGCAACA-3'	221
165 rDNA	165 ribosomial DNA	Replication	5'-CAGCACATTGGTAGTAATAC-3' 5'-ACTAGGTATTAACCAATTGC-3'	404
pilU	Twitching motility protein	Surface structures	5'-CAATGAAGATTCACGGCAATA-3' 5'-ATAGTTAATGGCTCCGCTATG-3'	915
rfbD	dTDP-4- dehydrorhamnose-3, 5-epimerase	Surface polysaccharides	5'-TTTGGTGATTGAGCCGAGGGT-3' 5'-CCATAAACGGCCGCTTTC-3'	429
nuoN	NADH-ubiquinone oxidoreductase, NQO14 subunit	Aerobic respiration	5'-GGGTTAAACATTGCCGATCT-3' 5'-CGGGTTCCAAAGGATTCCTAA-3'	1,398

Primer pairs used in the MLST scheme for typing of *Xylella* fastidiosa subspecies (Source: http://pubmlst.org/xfastidiosa/) Elbeaino *et al.*,2014

- An alternative for discriminating between closely related *X. fastidiosa* isolates is to perform MLSA of genes influenced by environmental factors, termed environmentally mediated genes.
- Here multilocus sequence analysis of environmentally mediated genes (MLSA-E) was applied to identify X. *fastidiosa* isolate relationships.
- MLSA-E was used for genes related to processes important for establishing *X. fastidiosa* infections and colonization of the insect vector, such as surface attachment, biofilm formation, virulence, and nutrient transport and utilization.

Genes selected for final *X. fastidiosa* MLSA-E analysis:

- 1. acvB (virulence);
- copB (copper resistance);
- *3. cvaC*^a (toxin);
- 4. fimA (attachment);
- *5. gaa*;
- *pglA*^a (cell wall degradation);
- *7. pil*A (motility);
- *rpf*^F (pathogenicity);
- 9. xadA^a (attachment);

Parker *et al.*,2012

10. etc.

Gene	Locus tag (Temecula)	Gene size (bp)	Category	Description	Forward primer $(5' \rightarrow 3')$	Reverse primer $(5' \rightarrow 3')$	Amplicon size (bp)	Reference(s
acvB	PD_1902	900	Virulence	Virulence protein: suggested to regulate pathogenicity and disease symptoms	ACAGTA TCGCCG TC GAAG TGATGA	CATGCA TAC R GC GATG Y T TCCGAT	743	34
copB	PD_0101	930	Resistance	Copper resistance protein B precursor: encodes a copper resistance cation- translocating ATPase induced by copper exposure	ATGAAC ACCCGT AC CTGG TTCGTA	ATTTAG TCTCCA CCATGA GCCGCA	607-862	68, 82
vaCa	PD_0215	309	Toxin	Colicin V precursor: encodes a bacteriocin precursor proposed to be a defense mechanism	TGCGTG AATT R A CA TTGA CCG	CCTAGT CTGCGG CTTAAG CAGATT	330	20, 62
mA	PD_0062	555	Attachment	Fimbrial subunit precursor: component of type I pili important for biofilm formation and aggregation	CCCAGT GCGTCG TTATCG ATTATT GGT	TTTYGY ACTCTC AA GCAT CGCATC	557	18–20, 24, 25, 46
gaa	PD_0315	1,992	Toxin	Glutaryl-7- aminocephalosporanic acid acylase precursor: encodes a member of the newly described family of β - lactam antibiotic acylases	TGAGAG CTGC Y G ATGTTC CAATGA	ACAGCT TCTGGC AAGAAC AAGCAC	1129	4, 5
oglA ^a	PD_1485	1,635	Cell wall degradation	Polygalacturonase precursor: needed for degrading host plant cell walls to allow colonization	TAGTGC TGGCCT AA CGAT GT Y GGT	CCGTAT CAGCAA CCACAT GGAAGT	828/829	63, 71
vilA	PD_1924	447	Motility	Fimbrial protein: major structural protein of type IV pili used for twitching motility and upstream migration	ATCGC K CTGCC Y AT GTAC CAAA	CAGCAT TGATCG TRTTGC TGTRTG	405	57
rpfF	PD_0407	873	Pathogenicity	Regulator of pathogenicity factors: involved in biosynthesis of diffusible signal factor (DSF) to mediate cell-to-cell signaling for biofilm formation	GCGCTC CATAGT TC GGAG TGATTT	ATGTCC GCTGTA CATCCC ATTCCT	825	8, 9, 60
xadA ^a	PD_0731	2,994	Attachment	Outer membrane afimbrial adhesin: may contribute to initial cell binding to surfaces	TGGGAG GTCAAA GYACTG CCATCA	GCATTG GCAGCA ACACTC GAATCA	1087/1108	25

dN/dS ratio: Nucleotide substitutions in genes coding for proteins can be either synonymous (do not change amino acid), alternatively called silent substitutions, or non-synonymous (changes amino acid). dN/dS measured across the whole protein sequence between two divergent species in theory tells you something about selection. If this ratio = 1, then the whole coding sequence evolves neutrally, when 0 < dN/dS < 1, it's under constraint, and when > 1 under positive selection.

Temecula/9a5c *dN/dS* for housekeeping genes, nonhousekeeping genes, and the final MLSA-E gene regions used in this study.

Xylella fastidiosa strain Temecula was isolated from a naturally infected grapevine with Pierce's disease in a winegrape-growing region of California.

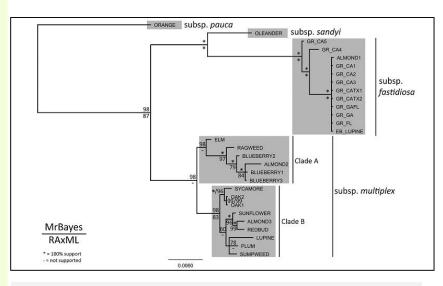
Parker et al.,2012

Housekeeping	g genes	genes	ekeeping	gene regions		
Gene	dN/dS	Gene	dN/dS	Gene	dN/dS	
cysG	0.19	acvB	0.29	acvB	0.26	
gltT	0.09	copB	0.28	copB	0.26	
gyrB ^b	0.06	cvaC	0.34	cvaC	0.35	
holC	0.11	exbD1	0.11			
leuA	0.07	fimA	0.40	fimA	0.37	
malF	0.10	gaa	0.23	gaa	0.22	
nuoL	0.10	pglA	0.21	pglA	0.21	
petC	0.28	pilA	0.24	pilA	0.30	
pyrE ^c	0.08	pilJ	0.10			
		rpfF	0.19	rpfF	0.19	
		xadA	0.30	xadA	0.36	
Mean	0.12		0.24		0.28	
Median	0.10		0.24		0.26	

Nonhousekeeping

Final MISA_F

^aUnless noted, housekeeping genes are from the MLST study. Nonhousekeeping genes are from this study. The dN/dS (synonymous substitution) ratios of the nonhousekeeping genes were significantly higher than the dN/dS ratios of the housekeeping genes (Wilcoxon ranksum test, two-tailed P= 0.0013).


^bgyrB used in other *X. fastidiosa* phylogenetic analyses. ^{*c*}*pyrE* used in initial MI SA-E analyses in this study.

556

Master mix and PCR conditions:

- Isolate DNA was amplified by PCR on an S1000 thermocycler (Bio-Rad Laboratories, Hercules, CA) in reaction mixtures (50µl) containing the following components: 1.25 U Perfect *Taq* DNA polymerase, 1x Perfect *Taq* PCR buffer, 0.2 mM deoxynucleoside triphosphates, 0.2 µM each primer, and 1 µl DNA template.
- Cycling parameters for all genes were 94°C for 3 min, followed by 25 cycles of 94°C for 30 s, 62°C for 30 s, and 72°C for 45 s, with a final step of 72°C for 10 min.
- PCR products were verified by gel electrophoresis.
- DNA sequencing was conducted on an ABI 3730xl DNA analyzer.

- Expanded subtree for X. fastidiosa subsp. fastidiosa showing variation in isolates from grape.
- Branch lengths are transformed to enable viewing of branches and relationships between haplotypes.
- BP (Bayesian posterior) probabilities and maximum likelihood bootstrap values are presented above and below each node, respectively.
- Asterisks indicate 100% support values, while dashes indicate no support on the basis of ML analysis.

MLST is probably the best PCR-based approach to identify and classify *X. fastidiosa*. Also MLST may be more suitable for strain/subspecies studies. (Baldi and La Porta,2017).

Molecular Diagnosis of *Xylella* Three Real-time PCR tests for detection of *Xylella fastidiosa*

- Three real-time PCR tests are recommended and have been validated.
- Two tests based on Francis *et al.*,2006 including:
- 1. SYBR green version, and
- 2. Taqman version.
- The test based on Harper *et al.*,2010; erratum 2013.

Real-time PCR 1. SYBR green version *Xylella fastidiosa*

- This PCR is suitable for the detection and identification of *Xylella fastidiosa*.
- The test is based on Francis *et al.*,2006.
- The target sequence is a conserved hypothetical protein HL gene.
- Amplicon size: 221 bp.
- Forward primer HL5 sequence: 5'-AAGGCAATAAACGCGCACTA-3';
- Reverse primer HL6 sequence: 5'-GGTTTTGCTGACTGGCAACA-3'.

Real-time PCR SYBR green version Master mix

PCR conditions: Pre-incubation at 95°C for 5 min, followed by 40 cycles of (95°C for 20 s and 60°C for 40 s); melt-curve analysis is performed immediately after the amplification protocol by collecting data over a temperature range of 65–95°C in 0.5°C increments

Reagent	Working concentration	Volume per reaction (µL)	Final concentration
Molecular-grade water*	N.A.	3.88	N.A.
SYBR Select Master Mix (Applied Biosystems)	2x	5.5	1 _X
Forward primer (HL5)	10 µM	0.31	0.28 μM
Reverse primer (HL6)	10 µM	0.31	0.28 μM
Subtotal		10	
Bacterial suspension or DNA extract		1	
Total		11	

*Molecular-grade water should preferably be used, or prepared purified (deionized or distilled), sterile (autoclaved or 0.45-µm filtered) and nuclease-free.

N.A.: not applicable, not available

Real-time PCR 2. Taqman version *Xylella fastidiosa*

- This PCR is suitable for the detection and identification of *Xylella fastidiosa*.
- The test is based on Francis *et al.*,2006.
- The target sequence is a conserved hypothetical protein HL gene.
- Amplicon size: 221 bp.
- Forward primer HL5 sequence: 5'-AAGGCAATAAACGCGCACTA-3';
- Reverse primer HL6 sequence: 5'-GGTTTTGCTGACTGGCAACA-3'.
- The probe sequence is: 5'/FAM/-TGGCAGGCAGCAACGATACGGCT-/BHQ1/3'.
- Automatic baseline and manual threshold of 0.1.

Real-time PCR

Taqman version Master mix

PCR conditions: Pre-incubation (UNG step) at 50°C for 2 min, initial denaturation at 95°C for 10 min, followed by 45 cycles of (95°C for 15 s and 60°C for 60 s)

Reagent	Working concentration	Volume per reaction (µL)	Final concentration
Molecular-grade water*	N.A.	1	N.A.
Real-time PCR buffer (TaqMan® Universal PCR Master Mix, Thermo Fisher Scientific, 2×)	2x	5	1x
Forward primer (HL5)	10 µM	0.9	0.9 µM
Reverse primer (HL6)	10 µM	0.9	0.9 µM
Probe 1 (probe)	10 µM	0.2	0.2 µM
Subtotal		8	
Bacterial suspension or DNA extract		2	
Total		10	

*Molecular-grade water should preferably be used, or prepared purified (deionized or distilled), sterile (autoclaved or 0.45-µm filtered) and nuclease-free.

N.A.: not applicable, not available

Real-time PCR Third method *Xylella fastidiosa*

- This PCR is suitable for the detection and identification of *Xylella fastidiosa*.
- The test is based on Harper *et al.*,2010, erratum 2013.
- The target sequence is located at the level of the gene coding for the 16S rRNA processing rimM protein.
- Forward primer XF-F sequence:
- 5'-CACGGCTGGTAACGGAAGA-3';
- Reverse primer XF-R sequence:
- 5'-GGGTTGCGTGGTGAAATCAAG-3';
- Probe XF-P sequence:
- 5'-6-FAM -TCG CAT CCC GTG GCT CAG TCC-BHQ-1-3'.

Real-time PCR Third method Master mix

PCR conditions: Pre-incubation at 50°C for 2 min followed by 95°C for 10 min, followed by 40 cycles of (94°C for 10 s and 62°C for 40 s). Heating ramp speed: $5^{\circ}C s^{-1}$

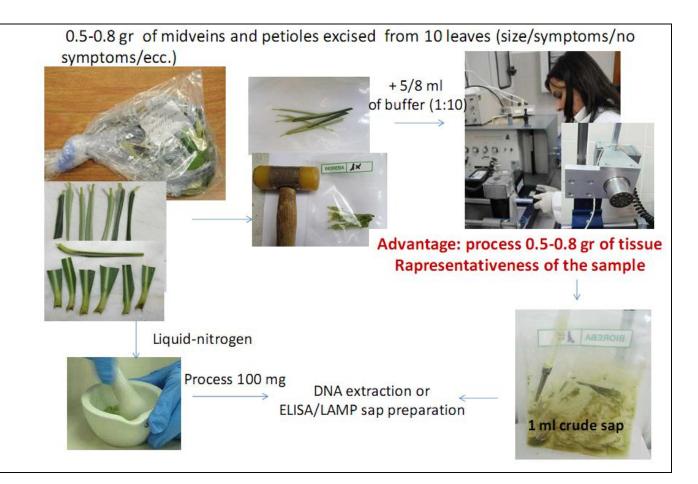
Reagent	Working concentration	Volume per reaction (µL)	Final concentration
Molecular-grade water*	N.A.	6.48	N.A.
Taqman Fast Universal Master Mix (Applied Biosystems)	2 x	10	1x
Forward primer (XF-F)	10 µM	0.6	0.3 μM
Reverse primer (<i>XF-R</i>)	10 µM	0.6	0.3 μM
Probe 1 (<i>XF-P</i>)	10 µM	0.2	0.1 μΜ
BSA	50 μg μL ⁻¹	0.12	0.3 μ g μ L ⁻¹
Subtotal		18	
Bacterial suspension or DNA extract		2	
Total		20	

*Molecular-grade water should preferably be used, or prepared purified (deionized or distilled), sterile (autoclaved or 0.45-µm filtered) and nuclease-free.

N.A.: not applicable, not available

Real-time PCR Third method Master mix

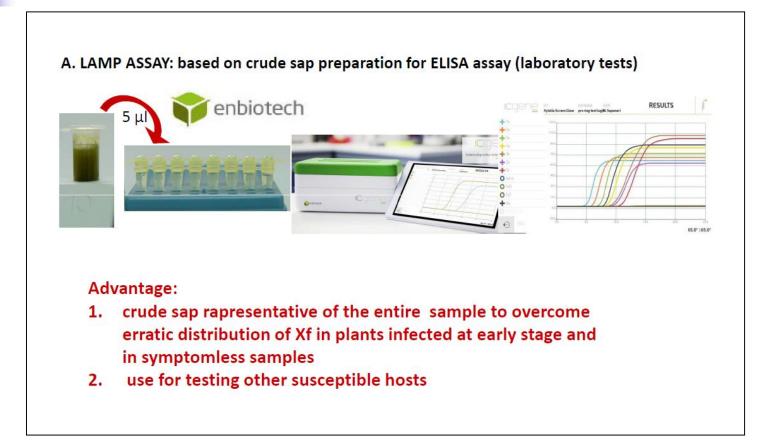
PCR conditions: Pre-incubation at 50°C for 2 min followed by 95°C for 10 min, followed by 40 cycles of (94°C for 10 s and 62°C for 40 s). Heating ramp speed: $5^{\circ}C s^{-1}$


Reagent	Working concentration	Volume per reaction (µL)	Final concentration
Molecular-grade water*	N.A.	6.48	N.A.
Taqman Fast Universal Master Mix (Applied Biosystems)	2 x	10	1x
Forward primer (<i>XF-F</i>)	10 µM	0.6	0.3 µM
Reverse primer (<i>XF-R</i>)	10 µM	0.6	0.3 µM
Probe 1 (XF-P)	10 µM	0.2	0.1 μΜ
BSA	50 μg μL ⁻¹	0.12	0.3 µg µL ⁻¹
Subtotal		18	
Bacterial suspension or DNA extract		2	
Total		20	

*Molecular-grade water should preferably be used, or prepared purified (deionized or distilled), sterile (autoclaved or 0.45-µm filtered) and nuclease-free.

N.A.: not applicable, not available

Detection procedure

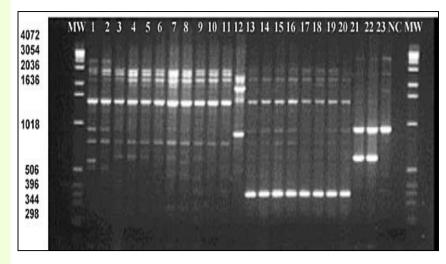

Sample preparation for DNA extraction or ELISA/LAMP sap preparation LAMP assay

Loconsole,2016

Detection procedure

Sample preparation for DNA extraction or ELISA/LAMP sap preparation LAMP assay

Molecular Diagnosis of *Xylella* PCR approaches to *X. fastidiosa* study Genetic variation


- In order to characterize and differentiate strains and pathotypes of *X. fastidiosa*, several molecular techniques have been used.
- In the late eighties and early nineties, restriction fragment length polymorphism (RFLP) and randomly amplified polymorphic DNA (RAPD) analyses were largely diffused to study strain differentiations of pathogenic bacteria.
- In the following years, RFLP and RAPD were often used in combination with other techniques, such as REP PCR, ERIC-PCR and contour-clamped homogeneous electric field (CHEF), in order to improve sensitivity and reliability of the test.

Diagnostics methods Genetic variation rep-PCR

- Repetitive sequence based-PCR technology (REP-PCR) was used to identify unique PCR products for *X. fastidiosa* causing Pierce's Disease (PD).
- The DNA from *X. fastidiosa* strains were amplified with:
- REP1-R (5'-IIIICGICGIATCCIGGC-3') and
- REP 2 (5'-ICGICTTATCIGGCCTAC-3') primers (Versalovic *et al.*, 1991).
- The overall reactions were adjusted to a final volume of 20 µl, containing:
- 1 X PCR buffer (50 mM KCl, 200 mM Tris-HCl, pH 8,4),
- 2 mM MgCl₂,
- 200 µM of each dNTP,
- 1 U of *Taq* DNA polymerase,
- 30 ng of each primer (REP1-R and REP 2) and
- 50 ng of template DNA.

Diagnostics methods Genetic variation rep-PCR

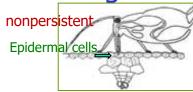
- The molecular profiles obtained by the REP-PCR amplification showed three distinct groups among the *X. fastidiosa* strains.
- The first group was outlined only by X. fastidiosa isolated from citrus (9a5c, 11347, 10348, 10438, 11066, 11067, 11834, 11380, 11775 and 11779), with amplifying fragments ranging from 300 to 4,000 bp.
- The second group was composed of seven strains of *X. fastidiosa* from citrus variegated chlorosis (11037, 11038, B-14, M2-1, 11399, 11400, CVC-5) and one from coffee trees (12288). The distinction of this group was possible due to the presence of a 300 bp amplified fragment.
- The third group, comprised of strains from grapevine (8935 and 9713) and plum (9746), showed a sufficiently distinct profile from the others, with a 630-bp fragment.

Travensolo et al.,2005

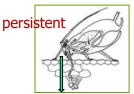
Molecular Diagnosis of *Xylella* PCR approaches to *X. fastidiosa* study Genetic variation

- A more recent technique to study genetic variability among strains exploits the so called short sequence repeats (SSRs) that are located within the prokaryotic genome (Kremer *et al.*, 1999).
- Such short repetitive regions, due to the potentially variable number of tandem repeats (VNTR), can be highly polymorphic among different strains of bacteria and therefore represent a valuable tool for molecular studies.
- A set of 34 SSR markers were developed within the genome of *X. fastidiosa* and used for genotyping studies.

List of SSR markers specific for X. *fastidiosa.* SSR markers proved to be powerful tools to distinguish genetically similar isolates, as the average level of polymorphism found among the 34 SSRs was 11.3 alleles per locus.


Marker	Forward primer	Reverse primer	Motif	Hosts	Citations Wo
SSR20 ^a	ATGAAGAAGCCAGGATACAT	GCTACACGTGCAACAAC	(ATTGCTG)13	Citrus, coffee, grapevine, plum, Japanese Lantern, periwinkle	8-98
SSR21 [#]	AACACGGATCAAGCTCATG	GGAACACGCAATAGTAAGA	(TGTTATC)21	-	
SSR26ª	CTGTGATCGGTGAATTGA	TCAAGCACACTTOCTACG	(GTGTGTGA37	-	
SSR28 ⁴	GCAACGCTGTTATCTCAAT	ATTACGCTTCTTATCGCTGT	(GTGTGCCT)11	7.	
SSR30 ^a	TACGCTGCACCTGTCTG	CTGTGAACTTCCATCAATCC	(TGATCCTG)15	-	
SSR36 ^a	ATGTCACTCAGGTCAGG	CAGAACCACCGACTG	(TGTTGGGG)10	(m)	
SSR40 ^a	ACCTTGACGACGGATG	TAGGAACTGCTGCTACTGAT	(GAAGGCGTA/27	-	
SSR32 ^a	AGATGAACCTCGCCAC	GTACTCATCTGOGATGG	(CTGATGTG)9	-	
SSR34 ^a	TGATAGAACTGTTTGACGCATTTG	TCGGGAAGTTTGGGGTGAC	(TTGGGTAG)22/(TTGGGTAA)35		
OSSR-2 ^b	TIGCITCACCATTAGCCTTATC	GGCCGTACAGGACOGATC	(ATG)e	Grape, citrus, almond, oleander	22-37
OSSR-9 ^b	TAGGAATOGTGTTCAAACTG	TTACTATOGGCAGCAGAC	(TTTCOGT)13	-	
OSSR-12 ^b	ACAGTCTGTGTCCGCAATTTG	CAGGOGCAGATAGCATTGATC	(AGAGGGTAT)9		
OSSR-14b	GGCGTAACGGAGGAAACG	ATGAACACCCGTACCTGG	(TGATCCATCCCTGTG)11	-	-
OSSR-16 ^b	GCAAATAGCATGTACGAC	GTGTTGTGTGTGTGTGG	(CTGCTA)12		
OSSR-17b	AGTACAGOGAACAGGCATTG	AGCAACCAGGACGGGAAC	(TGCCTG)10		
OSSR-19 ^D	GCTGTGAACTTCCATCAATCC	GCAAGTAGGGGTAAATGTGAC	(CAGGATCA)10	-	
OSSR-20 ^b	ATCTGTGCGGCGGTTCTG	CACTEGCGGCGTAGATACTEC	(AGGATGCTA/20	-	
CSSR-4 ^b	AACCCAATTCTTTTAATATGTG	TTGCAGCATTAGATATTTGAG	(TGCC)7	-	
CSSR-6 ^p	CGCACTGTCATCCATTTAATC	GCTGCTTCATCTAGACGTG	(GCTGTA)7	1.1	
CSSR-7 ⁰	CACAGCGAACAGGCATTG	AGCAACCAAGACGGGAAC	(CTGTGC)14	-	
CSSR-10 ^b	GCAACCACAAAGCCGCAG	AGCACCTCTTAGCATCACTGG	(CAATGA)10	-	
CSSR-12 ^b	TAAGTCCATCACCGAGAAG	AAACGGATTTAGGAACACTC	(GAAGGCGTA)27	-	
CSSR-13 ^b	CAATGTCACTCAGGTCAG	TTCTGGAATACATCAAATGC	(TGTTGGGG)10		
CSSR-16 ^b	CGATCAACCCATTCACTG	GCTCCTATTTGCATGATATTG	(GTGGTGGCA)8	-	
CSSR-17 ^D	AGAAGTATTCGCTACGCTACG	GGTGATGATTCAGTTGGTGTTG		-	
CSSR-18 ^b	GTGCTTCCAGAAGTTGTG	GACTGTTCTCTTCGTTCAG	(GCCAA)12		
CSSR-190	TGCTGTGATTGGAGTTTTGC	TCAAACGAATCTGTCCATCAAC		-	
CSSR-20 ^b	GGTATCGCCTTTGGTTCTGG	GACAACCGACATCCTCATGG	(GTAGCA)8		
ASSR-9P	GGTTGTCGGGGCTCATTCC	TTGTCACAGCATCACTATTCTC	(CAAGTAC)11	-	
ASSR-11b	AGAGGCAACGCAGGAACAG	GTGAGTTATATCGGTGCAGCAG	(ACGCATC)10		
ASSR-126	TGCTCATTGTGGCGAAGG	CGCAACGTGCATTCATCG	(GATTCAG)14	2.00	
ASSR-14 ^b	TTGACTCAAGGAATAAAAC	GAAAAGAGTGTCAATACG	(CTGCGTGC)11	-	
ASSR-16 ^b	TTAATCAACAACGCTTATCC	TCGCAGTAGCCAGTATAC	IGCTCCGGTTCTA28		
ASSR-19b	CGCCGACTGTCTATGTGAC	TTOCTAGCAATGGCAATGTTG	(ACAACGI10	1.00	
ASSR-20 ^b	TTACTATOGGCAGCAGAOG	TGAAGCAATGGTGGATTTAGG	(ACAGAAA)10	-	
GSSR-4 ^b	GOSTTACTOGCGACAAAC	GCTCGTTCCTGACCTGTG	(ATCC)7	-	
GSSR-6 ^b	TGTTCTCTTCGTTCAGCCAAGC	OGCAGCAGAGCAGCAGTG	(CTTGT)12		
GSSR-7 ^b	ATCATGTOGTGTOGTTTC	CANTANAGCACOGAATTAGC	(GGCAAC)24	+	
GSSR-12 ^b	TTACGCTGATTGGCTGCATTG	GTCAAACACTGCCTATAGAGO	(TATCTGT)20	-	
GSSR-14 ^b	TIGATGTGCTTTTGCGGTAAG	GACAGGTOCTCTCATTGCG	(TOCCGTA)24	-	
GSSR-15 ^D	CCGCAGAGTCCGTTGTAAC	AGCOGACGCACGGTATATC	(AGCCTGC)17	-	
GSSR-19 ^b	GOCGATGCAGAACAAGAAC	TCAACTTCGCCACACCTG	(GAAAACAAG)19	() = ()	
GSSR-20 ^b	TGGATGGATAGATGATTCAGCC	CGATCAGTGGAGGATGTCTTG	(GAACCACTA)?	-	
COSS1 ^c	GAAACAAGATGGCGGTTGC	CATTTAAACG/GGCGGCATA	(ATTGCTG)15	Coffee, citrus	0-0
COSSR6 ^C	TGCTGCGCGATAACCAAGT	CATCCAATCAGOOCTAACCT	GTGATGCGIO	-	
CSSR45 ^{II}	ACAGACATCACOGGCATTG	AATGTCGCTGCCAATCCAT	CACACCGAGATGGAGE	-	
COSSR4ª	CAAGGTGACCGCTAGCCTAT		AATACAC)13 -		
COSSR6ª	ACACTGACACAACAGCCACCA		ATACAGA)9 -		
COSSR3 ^c	AAGTATTCGCTACGCTACGC	GTGTGTTATGTGTGCCATTCGT (C	TGATGTG)10 -		
CSSR42 ^c	ATTACGCTGATTGGCTGCAT	GTTTCATTACGCGGAACAC (T	GTTATC)21 -		

Baldi and La Porta, 2017


Francisco et al. (2017)

Vector-borne fastidious bacteria Persistent and nonpersistent transmission

- Generally, vector acquisition of pathogens increases with time spent feeding on infected plant sources of the pathogen.
- Nonpersistent transmission: Transmission is called nonpersistent if the rate of transmission drops to near zero within a short time(hours).
- Persistent transmission: Describes situations in which the vector can transmit over many days, in some cases, for weeks or months.
- All phytoplasmas are transmitted to plants by phloemfeeding insects in a persistent propagative manner.

Purcell and Almeida, 2005;...

Diseases caused by vector-borne fastidious bacterial pathogens

 Some plant parasites transmitted by insect vectors must multiply and circulate throughout the body of the vector to be transmitted.

Type of pathogen	Vector	Type of transmission	
<i>Xylella fastidiosa</i> (numerous diseases)	Xylem sap-feeders (Leafhopper known as Glassy-winged sharpshooter)	Noncirculative but persistent, propagative in vector	
<i>Ca.</i> Liberibacter Citrus greening	Psyllids	Foregut-borne (non- circulative), persistent	
Aster yellows phytoplasma	Leafhoppers (several spp.)	circulative, propagative	
<i>Spiroplasma citri</i> Citrus stubborn	Leafhoppers (several spp.)	circulative, persistent manner	

Glassy-winged sharpshooter (GWSS) The main vector of *Xylella fastidiosa*

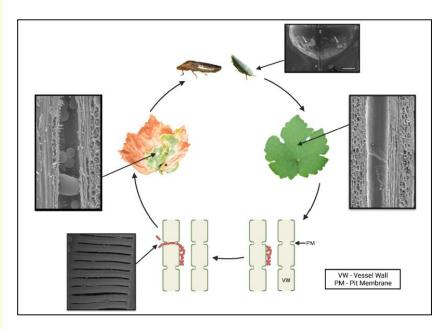
- The leafhopper insect known as glassy-winged sharpshooter(*Homalodisca coagulata*) (GWSS) is the major vector of:
- 1. Pierce's disease, and
- 2. Phony peach disease.

Courtesy Russell et al

Gould & Lashomb,2005 576

Sharpshooter(GWSS)

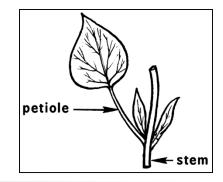
A model of the reproductive and behavioral tradeoffs facing glassy winged sharpshooters during adult and immature stages


 These tradeoffs occur because of the low nutritional value of plant xylem, the different requirements of the adults and immatures, and high egg parasitism.

PD of grapevine cycle

Role of insect vectors, such as the GWSS and the BGSS and excess tylose production in the xylem lead to PD symptom development

- Xylella fastidiosa is acquired by its xylem-feeding insect vectors, such as the GWSS and the BGSS, during the feeding process. Once acquired, it colonizes the insect's foregut and forms robust biofilms (indicated by white arrows). Xylella fastidiosa is transmitted to a new host plant when the insect vector feeds on a new plant and deposits Xylella fastidiosa cells directly into the plant xylem. Xylella fastidiosa achieves systemic colonization of the xylem by enzymatic degradation of the xylem pit membranes that connect adjacent xylem vessels.
- Xylella fastidiosa colonization induces prolific production of balloon-shaped defense related protrusions called tyloses in the xylem. Systemic colonization and vessel occlusion by bacterial biofilms and excess tylose production lead to PD symptom development.
- GSS, blue-green sharpshooter; GWSS, glassywinged sharpshooter; PD, Pierce disease; PM, pit membrane; VW, vessel wall.


Pathogenicity test Susceptible cultivars

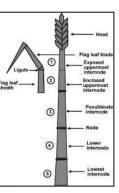
Common Grape Vine <

- A general inoculation procedure is described below.
- Pathogenicity tests should use plants of the same host from which the suspect *X. fastidiosa* was isolated.
- Where possible, the most susceptible cultivars should be used.
- Some recommended examples include: for V. vinifera (common grape vine), the cultivars 'Chardonnay', 'Cabernet sauvignon', 'Chenin Blanc' and 'Pinot Noir'; for Camellia sinensis (tea), 'Pera', 'Hamlin', 'Natal' and 'Valencia'; and for Olea europaea (olive), 'Cellina di Nardo', 'Frantoio' and 'Leccino' (EPPO, 2018b).
- Catharanthus roseus (Madagascar periwinkle) is a herbaceous plant that is easily grown in a greenhouse and is susceptible to X. fastidiosa (Monteiro et al., 2001).

Pathogenicity test Needle inoculation

- Pathogenicity testing is recommended when requiring additional information on strain aggressiveness, potential host range, or to fulfil the requirements of Koch's postulates.
- Actively growing, susceptible plants need to be maintained in a greenhouse or growth chamber at 26-28°C.
- Inoculation techniques should deliver inoculum directly into the xylem vessels for development of symptoms.
- The most widely used method for plant inoculation is by needle puncture into the stem at the insertion of the petiole (Hill and Purcell, 1995; Almeida *et al.*, 2001).

Diagnostic protocols for regulated pest- DP 25: *Xylella fastidiosa*,2018 580


Pathogenicity test Needle inoculation

- To facilitate the rapid uptake of the inoculum by the transpiration system, inoculated plants should be young and should be grown in pots with dry soil.
- Cultures of bacteria grown for 8-10 days on suitable media should be used for pathogenicity tests.
- Bacteria are removed from solid media and suspended in PBS to produce a turbid suspension of approximately 10⁸–10⁹ cfu/ml (Abs_{600nm}= 0.2).
- A drop (20-50 µl) of inoculum is placed in a leaf axil and punctured through several times with a fine needle until the liquid is completely absorbed.
- Control plants are treated in the same way except that the suspending medium (PBS) is used instead of bacterial suspension.
- Plants must be maintained in the greenhouse or growing chambers at 26-28°C.

Diagnostic protocols for regulated pest- DP 25: *Xylella fastidiosa*,2018 581

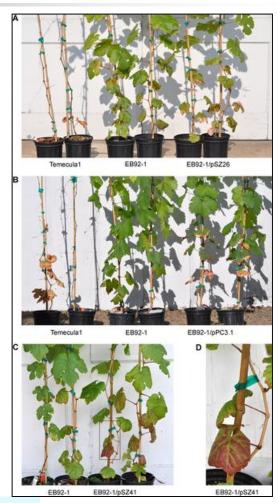
Pathogenicity test Needle inoculation from axenic cultures

- Deliver the inoculum directly into the xylem vessels through puncturing the stem with a syringe needle or pin.
- The inoculum should be visible turbid suspension(A₆₀₀=0.2) containing 10⁸ to 10⁹ CFU/ml in a buffer.
- With pin-prick method, a drop of the inoculum is placed on two of the lower internodes of the host plant.
- Symptoms (typical leaf scorch symptoms) produced by *X. fastidiosa* strains in various hosts require 3 weeks after inoculation (Pierece's disease of grapevine) to 18-24 months (e.g. phony peach) for symptom development.

Pathogenicity test Needle inoculation

- Inoculation techniques should ensure infiltration directly into the xylem vessels in order for symptoms to develop.
- The most widely used method for plant inoculation is by needle puncture in the stem at the insertion of the petiole.

Pathogenicity test


X. *fastidiosa* pathogenicity assays on grapevines Needle inoculation

- In brief, 10µL droplets of X. fastidiosa bacterial suspensions ($OD_{600} = 0.25$) in SCP buffer (trisodium citrate, 1 g/L; disodium succinate, 1 g/L; MgSO₄·7H₂O, 1 g/L; K₂HPO₄, 1.5 g/L; and KH₄PO₄, 1 g/L; pH 7.0) were applied on opposite sides of each of 4-5 internodes of ca. 3 ft high grapevines in pots, starting with the second internode from the base.
- A sterile, tuberculin needle was used to puncture the stems to a depth of 1 to 3 mm through each of the droplets.
- Plants were not watered for at least 36 hours prior to inoculation.
- Inoculated plants were maintained in an air conditioned green house and carefully observed for the appearance of symptoms.
- Observations were recorded from the time the first visible symptoms appeared (ca. 4-6 weeks post inoculation) and continued for another 2 months.
- Disease severity was quantified and expressed as a % of diseased leaves (including bare petioles and bare nodes) on each inoculated plant by measuring the number of symptomatic leaves, the number of bare petioles and the number of bare nodes on each plant, and dividing by the total number of leaves (asymptomatic or symptomatic), bare petioles and bare nodes per plant.

Pathogenicity test

X. *fastidiosa* pathogenicity assays on grapevines Needle inoculation

- EB92-1/pSZ26 elicited typical leaf necrosis delimited with pinkish areas that were identical in appearance to plants inoculated with Temecula1(TM1) strain.
- As the infection progressed the entire lamina underwent necrosis leading to defoliation.
- Enlarged region from boxed area in (C) illustrating unique symptoms(D).

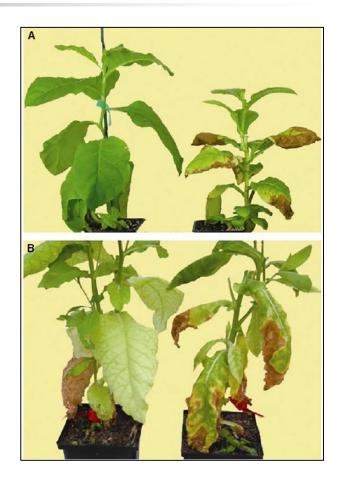
Zhang *et al.*,2015

Pathogenicity test

Recovery of X. fastidiosa from grapevine cuttings

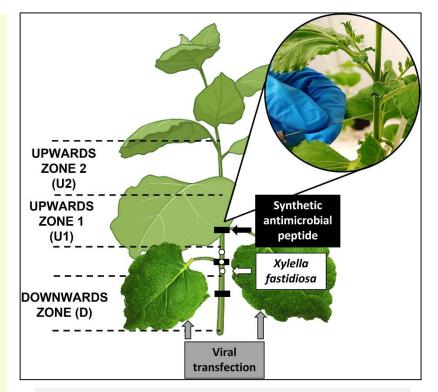
- Two grapevine cuttings (*Vitis vinifera*) of the variety "Cabernet sauvignon" were mechanically inoculated with the Temecula strain of *X. fastidiosa* by using the pin-prick method.
- After these vines showed PD symptoms, 23 petioles from symptomatic leaves were collected from these plants, surface sterilized, cut into small (1 mm) pieces, homogenized in buffer, and then dilution-plated on PWG, PD3, and XfD2 media, following published methods.
- After 1-3 weeks, we counted the number of CFUs by using a dissecting microscope.

Pathogenicity test Stem tissue inoculation


- An alternative method of inoculation is to raise a flap(a thin and flat piece) of stem tissue by cutting upward with a razor blade to expose the wood.
- A few drops of bacterial suspension are placed under the flap and the flap replaced and wrapped with grafting tape.
- Symptom development usually appears 60-80 days after inoculation; however, this is known to be variable and could be up to 24 months depending on host and strain combination (Hopkins, 2001).
- For both methods of inoculation, if possible the bacterium should be re-isolated to fulfil the requirements for Koch's postulates.

- In addition, a bioassay can be performed on Nicotiana tabacum (tobacco) plants by inoculating the petioles with suspensions of X. fastidiosa strains associated with almond leaf scorch disease (ALSD) and Pierce's disease (PD) of grapevine (Francis et al., 2008).
- Leaf scorch symptoms develop 10-14 days after inoculation.
- All PD strains and the ALSD strain Dixon caused characteristic leaf scorch symptoms, whereas two other ALSD-associated strains (M12 and M23) caused severe leaf chlorosis followed by necrosis, leaf death, and drooping of older leaves.

- 1 month old tobacco plants ('Petite Havana SR1') were inoculated by cutting the top of the stem and removing the lower juvenile leaves so that only three healthy adult leaves in the lower portion of the plant remain (numbered 1–3).
- Bacterial inoculum is prepared from *X. fastidiosa* cultured on solid media at 28°C for about 1 week. Bacteria from two plates are scraped off and resuspended in 1.5 mL succinate-citrate phosphate buffer.
- A 1-mL tuberculin syringe with a 23-gauge needle is used to inject half of the plants with approximately 20 µL of inoculum in each remaining tobacco petiole, near the axils. The other half of the tobacco plants (control plants) are injected in the same manner with buffer only.
- Plants continue growing from the site where the stem was cut. Leaves are classified according to their appearance as control (healthy) or senescent (showing browning symptoms) from buffer-inoculated control plants and asymptomatic (healthy) or symptomatic (marginal leaf scorch) from *X. fastidiosa*-inoculated plants.
- Symptoms start to develop 10–14 days after inoculation (leaf scorch symptoms).
- Francis *et al.*,2008 reports that tobacco inoculated with stains associated with almond leaf scorch and Pierce's disease showed typical symptoms resembling those of grapes and almond infected with *X. fastidiosa*.


EPPO,2016

- Symptoms were fully developed
 6 weeks after inoculation.
- A. The control plant mock inoculated with water (left) and plant inoculated with *X. fastidiosa* (right).
- Advanced symptoms at flowering time (2-3 months after inoculation).
- The water mock-inoculated control plant is showing normal leaf senescence (left) and the *X. fastidiosa* inoculated plant is showing marginal leaf scorching and a chlorotic halo around the edge of the scorch symptoms (right).

EPPO,2016

- Briefly, a pathogen suspension, at 10⁸ CFU/ml (OD₆₀₀ ≈ 0.3) was injected with a Hamilton 250 µl syringe including a thin needle with bevel tip.
- The needle end was introduced into approximately one half the plant stem diameter to directly access the vascular system.
- Three inoculations of X.
 fastidiosa suspension of 10 µl each (30 µl of total inoculum/plant, 3x10⁶ CFU/plant) were applied at the same side of the stem in a section of 3 cm at around 10 cm above the soil level.

Scheme of pathogen inoculation, peptide application points, and the leaves transfected with PVX constructs, and details of inoculation/delivery process in the stem of the plant.

Maintenance procedures Storage methods

- Lyophilization and storage on silica gel at 20°C are effective long-term storage methods (Sleesman and Leben, 1978; Hopkins, 1988b).
- Long-term culturing of *X. fastidiosa* frequently results in the loss of virulence, e.g., after 18 months of weekly culturing on PD2 medium (Hopkins, 1984).

Bacterial strains and culture conditions

- Xylella fastidiosa subsp. fastidiosa strain Temecula (ATCC 700964) was used in this study and was grown in PD2 liquid medium at 28°C.
- Stocks of *X. fastidiosa* cultures were stored in PD2 broth plus 20% glycerol at -80°C.
- Bacteria from these colonies were then transferred to fresh PW and PD3 medium plates for continued growth.
- For long-term storage, bacterial cells were harvested from petri dishes and maintained in PW broth with 20% glycerol at -80°C.

Bacterial strains and culture conditions

- Freezer cultures were made by putting 0.75 ml of sterile glycerol and 0.75 ml of Supplemental PW broth culture in cryotubes.
- The tubes were placed in Nalgene's Cryo 1°C Freezing container, put in a -80°C freezer and lowered to the freezer temperature in 1°C increments over four hours.
- After the tubes reached freezer temperature, they were transferred from the freezing container to a freezer box for long-term storage.

Identification of the bacterial pathogens BLOs (bacteria-like organisms)

Phloem-limited prokaryotes Disease diagnosis and pathogen diagnostics

candidatus Phlomobacter
 candidatus Arsenophonus
 candidatus Liberibacter

Note that *ca. Liberibacter* spp. are clustered in class *Alphaproteobacteria*, family Rhizobiaceae and *ca.* Phlomobacter and *ca.* Arsenophonus are clustered in class *Gammaproteobacteria*.

Fastidious phloem-limited bacteria

Fastidious Phloem-limited Bacteria

- Small with rippled cell wall, mostly Gram (-)
- No flagella
- Have not been cultivated
- Transmitted by insects

Symptoms: stunting of leaves, shoot proliferation, greening of floral parts

Serratia marcescens: Yellow vine disease of cucurbits

- Watermelon, squash, pumpkin
- Squash bug vector

Candidatus liberobacter asiaticus or africanus: Citrus greening

All citrus...spreads very quickly, worldwide problem

Large "pancake" canker lesion on red grapefruit fruit caused by X. citri.

Psyllid vector

Cuppels Biology 418a

Huanglongbing = yellow dragon

www.apsnet.org

Fastidious phloem-limited bacteria BLO(bacteria-like organisms)

- Phloem-inhabiting bacteria, which for several years were thought to be rickettsia-like organisms (RLO), were only discovered in 1972 (Agrios, 2005).
- More than 20 plant diseases are associated with or known to be caused by these bacteria-like organisms (BLOs), which range in size from 0.25 to 0.5 by 0.8 to 4.0 micrometers (Schubert, 2002).

Plant diseases associated with BLO

Disease Association	Plant Host	Geographic Location
Pollen sterility of garlic	Allium sativum	Germany
Sugar beet latent rosette	Beta vulgaris	Europe
Papaya bunchy top	Carica papaya	Caribbean Islands, Cent. Am.
Yellow vine disease of cucurbits	Citrullus lanatus, Cucumis melo,	USA
	Cucurbita spp.	
Citrus greening	Citrus spp., Poncirus trifoliata, and	Asia and Africa
	other rutaceous plants	
Coconut palm decline	Cocos nucifera	Tanzania
Carrot yellows	Daucus carota subsp. sativus	USSR
Strawberries yellows	Fragaria X ananassa	Australia
Strawberry marginal chlorosis	Fragaria X ananassa	France and Spain
Brown blast of rubber trees	Hevea brasiliensis	China
Hop crinkle	Humulus lupulus	Eastern Europe
Larch witches' broom	Larix decidua	Germany
Tomato stolbur-like	Lycopersicon esculentum	Eastern Europe
Proliferation and stunting	Melaleuca armilaris	Israel
Potato leaflet stunt	Solanum tuberosum	Israel
Little leaf	Sida cordifolia	Puerto Rico
Spinach witches' broom	Spinacia oleracea	Italy
Rugose leaf curl of clover	Trifolium spp.	Australia
Yellows of clover	Trifolium repens	Canada
Clover club leaf	Trifolium repens	USA and England
Wheat yellow leaf curl	Triticum spp.	China
Yellows disease of grapevine	Vitis vinifera	Germany, Greece
Infectious necrosis of grapevine	Vitis vinifera	Czechoslovakia
Shoot proliferation	Wissadula periplocifolia	Jamaica

Schaad et al.,2001

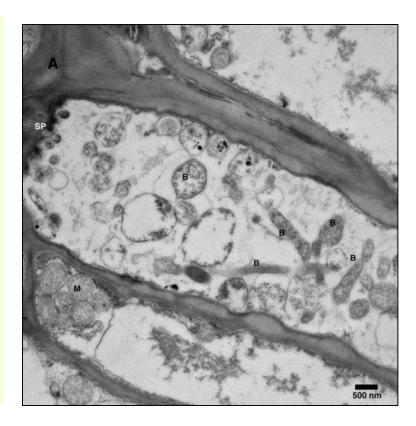
The genus *Candidatus* Phlomobacter

Candidatus Phlomobacter fragariae Marginal chlorosis of strawberry

- Candidatus Phlomobacter can be identified by amplification and sequencing of the 16S rDNA.
- By sequence comparisons, two primers specific for Phlomobacteria have been selected on the 16S rDNA sequence.
- They are efficient and specific for *Candidatus* Phlomobacter detection in plants.
- When used for DNA amplification in insects, these primers are not specific, as *Candidatus* Phlomobacter shares strong homologies with:
- 1. Insect bacterial symbionts;
- 2. Parasites;
- 3. Enterobacteria.

The genus *Ca.***Arsenophonus** Emergence and evolution of Arsenophonus bacteria as insect-vectored plant pathogens

- Notably, two species:
- 1. Phlomobacter fragariae, and
- 2. Arsenophonus phytopathogenicus, have been characterized as phloem-restricted plant pathogens that are obligatorily transmitted by and hosted in planthoppers.
- Bressan *et al.*, 2012 reviewed the current understanding on the lifestyle transition, evolution, host interaction, and infection cycles of these emerging plant pathogens.


Ca. Arsenophonus phytopathogenicus" is not a sister taxon to "*Ca.* Phlomobacter fragariae", but is a novel species, for the bacterium associated with sugar beet and strawberry diseases.

The genus *Candidatus* Liberibacter

- Candidatus Liberibacter is a genus of Gram-negative bacteria in the Rhizobiaceae family.
- Liberibacters are restricted to the sieve tubes of the phloem tissue and possess a characteristic doublemembrane cell envelope.
- The outer cell wall membrane and the inner cytoplasmic membrane can be observed. The peptidoglycan layer between the inner and outer membrane can be visualized by cytochemical treatments.
- Members of the genus are plant pathogens mostly transmitted by psyllids.

Cell structure *Candidatus* Liberibacter asiaticus'(CLas)

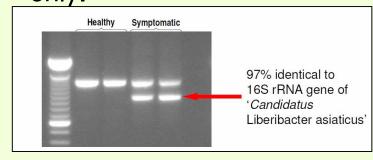
- Pleiomorphic round and elongated bacilliformlike shapes characteristic of `*Ca*. L. asiaticus'.
- B, bacterial cells;
- SP, sieve plate;
- M, mitochondria.
- Scale bar is 0.5 µm

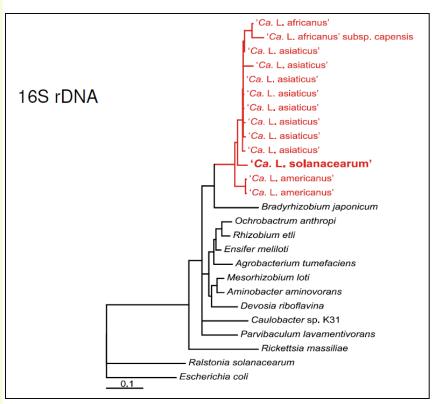
The genus Candidatus Liberibacter

Candidatus Liberibacter asiaticus	Huanglongbing (Citrus greening disease)
<i>Candidatus</i> Liberibacter asiaticus subsp. capensis	Present in an ornamental rutaceous (citrus family) tree
Candidatus Liberibacter africanus	Huanglongbing (Citrus greening disease)
Candidatus Liberibacter americanus	Blotchy mottle on sweet orange
Candidatus Liberibacter psyllaurous	Associated with potato and tomato Psyllid yellows
Candidatus Liberibacter solanacearum	Zebra chip disease of carrot, potato and tomato
Candidatus Liberibacter crescens	Isolated from papaya growing in Puerto Rico
Candidatus Liberibacter brunswickensis	Associated with the psyllid Acizzia solanicola on eggplant in Australia
<i>Candidatus</i> Liberibacter europaeus	Found in pear trees, where it seems to cause no symptoms and is vectored by the psyllid, <i>Cacopsylla pyri</i>

Liefting; Liefting co-workers; Bull *et al.*,2012; Bressan *et al.*,2012; Wikipedia,2020⁰³

Candidatus Liberibacter solanacearum'


Zebra chip disease of potato and spiky chlorotic apical growth, general mottling of leaves, curling of midveins and stunting of tomato



Tomato/potato psyllid (*Bactericera cockerelli*) observed in association with these affected crops.

Phylogenetic analysis of the 16S rRNA gene *Candidatus*' Liberibacter including a new Liberibacter species *Candidatus* Liberibacter solanacearum'

- Range of specific 16S rRNA PCR primers used in different combinations with universal 16S rRNA.
- Primers (fD2/rP1). A unique 1-kb fragment was amplified from symptomatic plants only.

Liefting co-workers

Citrus huanglongbing (greening) disease (citrus greening)

- Huanglongbing also called citrus greening or yellow dragon disease is one of the most serious insectvectored pathogens of citrus which is thought to have originated in China in the early 1900s.
- Known in China for 100 years where it was called "Huanglongbing" (HLB).
- This name has been translated into English as "yellow dragon disease".
- But Zhao in his 1981 review gives the English name as "yellow shoot disease" and more recently he confirmed that this is the correct meaning in the Chaoshan district of Guangdong Province where the disease was first observed.

HLB or Citrus Greening Disease candidatus Liberibacter asiaticus, africanus and americanus

- Three species

 of *Candidatus* Liberibacter
 cause huanglongbing:
- Ca. L. asiaticus,
- Ca. L. africanus, and
- Ca. L. americanus.
- The Asian form is the most widespread.

Symptoms of citrus greening

Note: Association of phytoplasma with *Ca.* Liberibacter asiaticus'(CLas) in sweet lime was reported for the first from Iran (Saberi *et al.*,2017). The HLB-associated phytoplasma was a member of peanut witches' broom (16SrII) phytoplasma group. Recently same type of association (phytoplasma with Huanglongbing (HLB) disease) was reported in pomelo (*Citrus grandis*) from India. Here, the pathogen belongs to 16SrXIV Group of phytoplasma, '*Candidatus* Phytoplasma cynodontis'(Ghosh *et al.*,2019).

Davis; Zhang,2019

HLB or Citrus Greening Disease Synonyms for citrus greening disease

- South Africa
 - Greening
 - Yellow branch
 - Blotchy mottle
- China
 - Yellow shoot (Huanglongbing)
- Taiwan
 - Decline (Likubin)
- India
 - Die-back
- The Phillippines
 - Leaf mottle
- Indonesia
 - Vein phloem degeneration

Presentation by Dr. Jamba Gyeltshen 4/06/09

Candidatus Liberibacter Strain differences

- There are three strains of the bacteria:
- *Candidatus* Liberibacter asiaticum:
- The Asian form usually produces a more severe disease reaction than the African form. This form is also heat tolerant, producing symptoms under cool to relatively warm conditions (up to 32°C) (Bové *et al.*,1974).
- *Candidatus* Liberibacter africanum:
- The African form of the pathogen is heat sensitive, with symptoms produced under relatively cool conditions (20-24°C optimum) (Garnier and Bové,1993).
- Extended periods of high temperatures suppress symptom development.
- *Candidatus* Liberibacter americanus:
- The American strain discovered in Brazil.

Disease symptoms BLO damage to hosts

- Within the citrus plant, the bacteria are limited to the phloem. This condition causes the following symptoms:
- Shoot color yellow
- Leaves with characteristic blotchy mottling
- Normally green tissue turns yellow (chlorosis)
- > Total foliage reduced
- Leaf tips dieback
- Premature fruit drop
- Root systems remain poorly developed with relatively few fibrous roots
- Citrus fruits infected with HLB have the following characteristics:
- > Shape lopsided
- Size small
- Color remaining green with seeds aborted
- Taste sour

Floyd and Krass, 2006;...

Trees eventually die; but before that, fruit is distorted and bitter, can't be used for juice.

Detection By symptoms

- Visual inspection is a very important tool for detection but it is not enough because symptoms of HLB can be confused with nutritional disorders (zinc, iron, manganese deficiencies) or with other diseases (*Citrus tristeza virus*, Stubborn, citrus blight).
- Symptoms of HLB develop slowly. Infected trees gradually decline in vigour and yield, and remain stunted or eventually die. The disease develops irregularly so that individual trees may show a mixture of normal and diseased sectors – this in itself being a diagnostic characteristic.
- Symptoms first appear as leaf mottling and chlorosis in one shoot or sector of the tree.
- Later, leaf symptoms resemble nutritional deficiencies (zinc, copper and nitrogen) but may vary depending on the bacterial strain.

Detection By symptoms

- On Leaves: The larger leaves on the lower parts of branches turn yellow along the main and secondary veins that later change to a "blotchy-mottle". As the discoloration spreads away from the veins, the leaves become pale to light yellow with unevenly distributed dark green areas. Leaves on weak terminal twigs are small, up-right and show a variety of chlorotic patterns, suggestive of zinc and iron deficiencies.
- The small leaves are pale at first and develop secondary chlorotic patterns as they mature. Mature leaves show irregular patches between the veins; the veins are often prominent and yellow.
- On Fruits: Fruits are reduced in size, of poor quality, and often fail to develop normal fruit colour.
- The columella is curved causing the fruit to be distorted and lopsided. Infected fruit have a bitter, salty taste, remain small and fall prematurely.
- Seeds in affected fruit are abortive.

HLB or Citrus Greening Disease Sectoring of greening in citrus tree canopy

State Agricultural Response Team

HLB or Citrus Greening Disease Candidatus Liberibacter asiaticus, africanus and americanus

Fig. 2. Young sweet orange from commercial planting in São Paulo Brazil with "yellow-shoot" symptom of HLB infection.

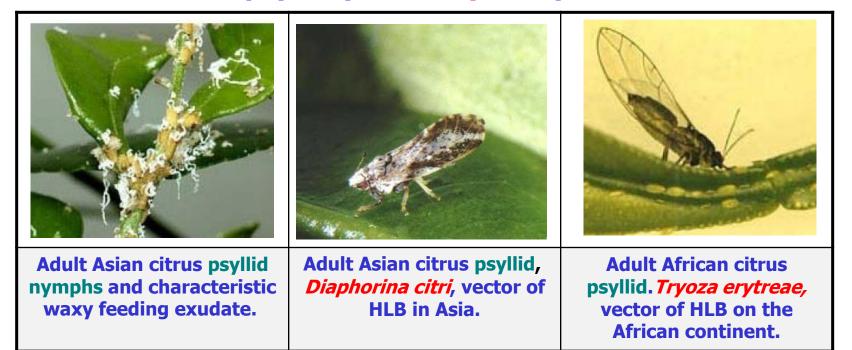
Fig. 3. Pummelo foliage from south Florida displaying "blotchy-mottle" symptoms.

Fig. 4. Sweet orange foliage from São Paulo, Brazil demonstrating asymetrical "blotchy mottle" symptom relative to the mid vein.

Fig. 5. *Citrus hystrix* tree in residential area of Miami showing severe vein corking symptom of HLB.

Gottwald et al.,2004

HLB or Citrus Greening Disease Candidatus Liberibacter asiaticus, africanus and americanus


Gottwald et al., 2004; Floyd and Krass, 2006

Citrus greening fruit symptoms

HLB-infected Sweet orange fruit from Brazil with blotchy mottle symptom on fruit surface.	HLB-infected Sweet orange fruit from Brazil with diagnostic silver spot that develops when passed firmly with finger.

Adult Asiatic or oriental citrus psyllid, *Diaphorina citri* vector of HLB

HLB is vectored by the following two species of psyllids:
1. Asian citrus psyllid (*Diaphorina citri*);
2. African citrus psyllid (*Trioza erytreae*).

Gottwald et al., 2004; Floyd and Krass, 2006

Diseases caused by vector-borne fastidious bacterial pathogens

 Some plant parasites transmitted by insect vectors must multiply and circulate throughout the body of the vector to be transmitted.

Type of pathogen	Vector	Type of transmission
<i>Xylella fastidiosa</i> (numerous diseases)	Xylem sap-feeders (Leafhopper known as Glassy-winged sharpshooter)	Noncirculative but persistent, propagative in vector
<i>Ca.</i> Liberibacter Citrus greening	Psyllids	Foregut-borne (non- circulative), persistent
Aster yellows phytoplasma	Leafhoppers (several spp.)	circulative, propagative
<i>Spiroplasma citri</i> Citrus stubborn	Leafhoppers (several spp.)	circulative, persistent manner

Diaphorina citri Vector of HLB

Diaphorina citri

Asian Citrus Psyllid Vector of citrus greening disease Top five list of pathogens reported in Florida Sept, 05

Nymph feeding on citrus leaf tissue

A. Wayadande

New Pest Response Guidelines Citrus Huanglongbing (greening) disease

- Floyd, J. and C.
 Krass,2006 and 2012.
- USDA/APHIS/PPQ– Emergency and Domestic Programs, Riverdale, Maryland.
- http://www.aphis.usda. gov/import_export/plant s/ppq_manuals.shtml

United States Department of Agriculture

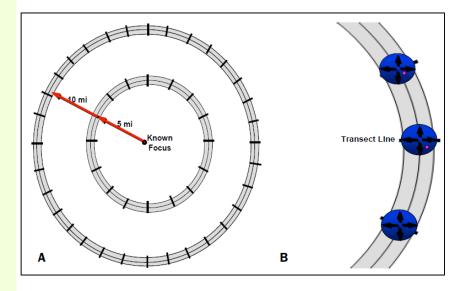
Marketing and Regulatory Programs

Animal and Plant Health Inspection Service

Cooperating State Departments of Agriculture

New Pest Response Guidelines Huanglongbing Disease of Citrus

4/10/07


Citrus susceptibility assessment Plant preference for sampling

- Use the following order of plant preference when sampling:
- 1. Orange, mandarin, tangelo, and tangerine
- 2. Pummelo, grapefruit, and sour orange
- 3. Lemon and lime.
- Sweet oranges and mandarin are more severe to HLB disease.
- In contrast, group of lemon and grapefruits are tolerant and limes (*C. aurantifolia*) and pummelo (*C. grandis*) are the most tolerant.

Sampling method

Examine trees for the presence of yellow shoots, foliar mottling, zinc pattern deficiency, and yellow veins

- A. Sampling points along concentric annuli transects at 5-mile increments away from a known positive host tree.
- B. Sampling points along an arc transect showing where searching begins to find the nearest host tree for survey.

Sampling& Shipping Instructions

Floyd and Krass,2006

- ➡ Collect leaves with mid-ribs that are attached to stems.
- ✤ Leaf samples
 - 1. Send a minimum of 20 leaves with stems.
 - 2. Place leaf and stem samples with paper towels in two resealable plastic bags, one bag inside another larger bag.
 - 3. Express air from bag.
 - 4. Seal bag.
 - 5. Record sample identification number on bag.
 - 6. Keep samples cool, but not frozen (in an ice chest).
- Fruit samples
 - 1. Place fruit in two paper bags, one bag inside another larger bag.
 - 2. Record sample identification number on bag.
 - 3. Keep samples cool but not frozen; in an ice chest is good.
 - 4. Do **not** send fruit samples without accompanying suspect leaf samples from the same tree.
- Pack resealable bags inside a sturdy cardboard box. Include packing material to prevent movement in the box. Omit ice packs.
- Assign and record for each sample a unique ID sample number. Assure that the sample is linked to any survey data collected for that sample by including the Survey ID number on the form.
- Include the completed PPQ 391 Specimens For Determination on page B-2—and any relevant tags or barcodes that came with the sample—inside the outer bag.
- Use overnight delivery to ship samples; FedEx® is preferred. Send samples on the same day they are collected, or before noon the following day. Ship samples Monday through Thursday only.

Sample collection

Host plant

- Place leaf samples in plastic bags in cool boxes and refrigerate as soon as possible.
- Leaves can be processed after three weeks if kept in plastic bags at 4°C and if no decay has occurred.
- Alternatively, the midribs can be excised and kept at -80°C.
- Put them into a 1ml of 2 X CTAB buffer (2% CTAB, 1,4 M ClNa, 100 mM Tris- Cl pH 8, 10 mM EDTA) in a 2 ml plastic tube with a screw cap, sealed with parafilm to prevent leakage during transport.

Sample collection

Host vector

- Preparation of specimens
- Place the adults or nymph in a vial
- Label the vial with the sample number, the date, geographical region.
- Preserve in 70% alcohol and put the vial in a box
- Place the box in a bag.

Isolation Squeeze-drop method

- 3- to 4-cm long sections of leaf midveins and petioles were cut from HLB infected citrus and surface sterilized by soaking in a 0.6% sodium hypochlorite solution for 3 min, followed by two separate rinses in sterile water for 2 min each.
- The surface-sterilized tissue was cut into 1-cm sections with a sterile scalpel and, using cooled, flame-sterilized forceps, were squeezed at the fresh cut end of the tissue to express a drop of sap from each section.
- These drops were directly touched onto the surface of duplicate agar plates.
- A sterile loop was then used to streak each drop over the agar surface ("squeeze-drop method").
- The squeezed tissue sections for each petiole and midvein were recombined, minced, and allowed to soak in sterile water (100 to 200 µl) for 10 to 20 min before pipetting 10 to 20 µl of the suspension onto two separate test agar plates and streaking the drop with a sterile loop ("mincesoak method").

Isolation Squeeze-drop method

- Each plate was wrapped with Parafilm M, inverted, and incubated at 28°C.
- Half of the plates were placed in a growth chamber under ambient conditions and half in a CO₂ chamber in a 5.0% CO₂ environment.
- At 2 and 4 weeks after plating, all resulting colonies were observed using a binocular dissecting microscope (Nikon SMZ1500) with oblique lighting from below, and portions of several single colonies were streaked onto similar test media.
- Very limited growth of '*Ca*. Liberibacter spp.' occurred on media C3G (selective for spiroplasms) and PD2 (for *Xylella fastidiosa*) when citrus vein extract (CVE) was added, creating the modified media C3G+E and PD2+E, respectively.

Isolation Liber A medium

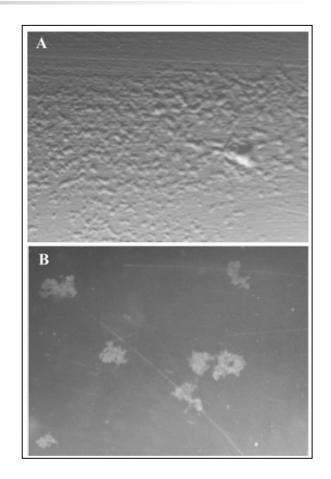
- A new medium designated Liber A has been designed and used to successfully cultivate all three 'Candidatus Liberibacter spp.', the suspect causative agents of huanglongbing (HLB) in citrus.
- The medium containing citrus vein extract and a growth factor sustained growth of `*Ca.* Liberibacter spp.' for four or five single-colony transfers before viability declined.
- 1. Colonies of '*Ca.* L. asiaticus' were irregular-shaped, convex, and 0.1 to 0.3 mm after 3 to 4 days.
- The suspect cells of `*Ca.* L. asiaticus' and `*Ca.* L. americanus' under scanning electron microscopy were ovoid to rod shaped, 0.3 to 0.4 by 0.5 to 2.0 μm, often with fimbriae-like appendages.

Isolation Liber A medium

- This new medium, named Liber A, contains citrus vein extract and a growth factor, and is able to sustain growth of all strains of bacteria.
- This bacterial growth medium permitted four to five colony transfers before viability was lost, i.e., transfer and growth on new media could not occur.
- All three species are characteristic Gram-negative-like bacteria with the following characteristics:
- 1. Ovoid to rod-like cells;
- Micrometer size of 0.2 to 0.3 (width) x 0.5 to 2.0 (length);
- 3. Fimbriae (thin protein fiber extensions).

Liber A agar medium The composition

- The final Liber A agar medium contained:
- 1.5 g of K₂HPO₄,
- 1.0 g of KH_2PO_4 , and
- 15.0 g of purified agar per liter.
- After autoclaving and cooling to 55°C in a water bath, followed by the addition of:
- 10 mg of NADP (phosphorylated nicotinamide adenine dinucleotide),
- 20 ml of CVE (citrus vein extract), and
- 5 mg of cycloheximide.
- For liquid Liber A medium, purified agar was omitted.


CVE was prepared from the petiole and midvein of young, fully expanded citrus leaves.

Sechler *et al.*,2009

Nicotinamide adenine dinucleotide, abbreviated NAD⁺, is a coenzyme found in all living cells and has several essential roles in metabolism. The main role of NAD⁺ in metabolism is the transfer of electrons from one molecule to another. NADPH or NADP(nicotinamide adenine dinucleotide phosphate), is a desaturase cofactor significantly increase the percentage of total polyunsaturated fatty acids (essential FAs).

Bacterial colonies *Candidatus* Liberibacter americanus'

- A. Typical colonies of [\]*Candidatus* Liberibacter asiaticus' strain China1 in the first streak after 14 days at ×150.
- B. 'Ca. L. americanus' strain Brazil1 in liquid Liber A after 21 days at ×150.

Liber A agar medium Drawbacks

- To the best of our knowledge, there were no followup or independent repetitions, either within the group or by others.
- In fact, there is still no pure culture of "Ca. L. asiaticus" that researchers can access or reproduce.
- These problems suggest the difficulty associated with the long-term reproducibility of culturing methods for "*Ca*. Liberibacter spp."

More media for'*Candidatus* Liberibacter asiaticus'

- Media tested for *in vitro* growth of LAS cells were:
- 1. K = one-third dilution of King's B medium (K medium);
- 2. K mdium with 50% juice from the infected fruit (J50 medium),
- 3. K with 50% commercially-available grapefruit juice (G50 medium), and
- 4. 100% commercially-available grapefruit juice (G medium).
- Results show that juice-containing media dramatically prolong viability compared to K in experiments reproduced during two years using different juice sources.

King's B, a low-iron medium, was selected for its ability to induce siderophore production in microorganisms, a well-recognized benefit of co-culture.

More media for'*Candidatus* Liberibacter asiaticus' Inoculum preparation from infected seeds

- Pomelo fruit from infected trees were collected (April 2011 to September 2012).
- Entire seed from the fruit were used to create a 'Ca. L. asiaticus' inoculum.
- Fruit were surface sterilized with 1.2% sodium hypochlorite solution followed by 70% ethanol solution.
- Seed were then placed in two to four autoclaved, sterile KLECO canisters with 3 ml of a one-third dilution of King's B media (K) per canister and pulverized(grind) for 2 min in a KLECO 4200 ball mill.
- Seed paste was then scraped into two sterile 50-ml conical tubes, and 35 ml of K was added to each.
- After thorough vortexing, the seed slurries were filtered through a 100-µm nylon net Steriflip Filter Unit (EMD Millipore, Billerica, MA) to remove large seed particles.
- Filtrates from seed from a single fruit were pooled to produce a 'Ca. L. asiaticus' inoculum.

Canister: any container with cylindrical in shape.

Parker et al.,2013

Identification and Diagnosis Thin layer chromatography and serology 'Candidatus Liberibacter'

- Prior to the development of molecular tests, HLB diagnosis was achieved by:
- Thin layer chromatography for determining the presence of gentisoyl-β-glucoside (Schwarz,1968), although not all HLB-infected citrus species produce it.
- 2. By serology: The development of monoclonal antibodies held promise for a rapid diagnostic test, but they proved to be too specific for general diagnosis.

Identification and Diagnosis Thin layer chromatography

- Monoglucose ester gentisic acid (gentisoyl-ß-Dglucose) is a fluorescent substance found in the albedo of fruit and in the bark of the branches of sweet oranges infected with HLB.
- This phenolic marker can be detected by thin layer chromatography (TLC).
- TLC extracts from
- 1. normal fruit give a yellow -brown fluorescent product, whereas
- 2. infected fruits give a bright violet fluorescent product which is characteristic for fruit from HLBinfected trees.
- The method is useful for indexing citrus orchards for HLB.

Molecular Diagnosis of BLOs Primers used for PCR detection OA1+OI1/OI2c

- Jagoueix *et al.*,1996 recommend the use of three primers (designed based on the 16S rDNA sequences) in the same PCR mixture: OA1+OI1/OI2c.
- Primer sequences:
- OI1: 5'- GCG CGT ATG CAA TAC GAG CGG CA 3'
- OA1: 5'- GCG CGT ATT TTA TAC GAG CGG CA-3'
- OI2c: 5'- GCC TCG CGA CTT CGC AAC CCA T-3'
- Primer OI2c/OI1 amplify *Ca.* L. asiaticus and *Ca.* L. africanus;
- Primer OI2c/OA1 preferentially amplify *Ca.* L. africanus

Molecular Diagnosis of BLOs Primers used for PCR detection OA1+OI1/OI2c

- Primer pair OI1 and OI2c is able to amplify the rDNA Las (*Ca.* Liberibacter asiaticus) and Laf species (*Ca.* Liberibacter africanus) (Teixeira et al. 2005a).
- When the 2 *Ca.* Liberibacter spp. are known or supposed to be present in any country, it is desirable to use the 2 forward primers, OI1 + OA1, and the common reverse OI2c primer in the same PCR mixture (Bové 2006).
- Sequence analysis shows that the 16S rDNA amplified from Las has one XbaI restriction site and yields, upon XbaI treatment, 2 fragments of sizes 520 and 640 bp.
- The 16S rDNA amplified from Laf (*Ca.* Liberibacter africanus) has an additional restriction site and yields 3 fragments of 520, 506, and 130 bp.

Molecular Diagnosis of BLOs Primers used for PCR detection OA1+OI1/OI2c

Add 1 μ I of the DNA preparation to 39 μ I of the following master mix.

Reagents	Initial concentration Final concentration		
Buffer	10X	1X (4 µl)	
DNTP s	5 mM	0.2 mM	
MgCl ₂	50 mM	2 mM	
Primer OI1	100mM	1 µM	
Primer O12c	100 mM	1 µM	
Primer OA1	100mM	1 µM	
Taq DNA polymerase	5U/µl	0.3 µl (1.5 U/µl)	
Water PCR grade			

Molecular Diagnosis of BLOs DNA amplification program OA1+OI1/OI2c

- 35 cycles each at 92°C for 40 s (denaturation step) and 72°C for 90 s (annealing and primer extension at the same temperature).
- Analysis by electrophoresis: 8 µl from the PCR reaction are analyzed on 0.7% agarose gel.
- The two Liberibacter spp. yield the same size amplicon of 1160 bp.
- The *Ca.* L. asiaticus amplicon contains one *XbaI* restriction site and yields two fragments (640 bp and 520 bp) upon restriction digestion, whereas the *Ca.* L. africanus amplicon has two restriction sites and yields three fragments (520 bp, 506 bp and 130 bp).

Master mix for *Xbal* : Water (PCR grade): 12.5 μl, Buffer: 2.0 μl, XbaI: 5.0 units, PCR product: 5.0 μl, Total volume: 20 μl.

Molecular Diagnosis of BLOs Primers used for PCR detection Primers A2 and J5

- Hocquellet *et al.*,1996, proposed the use of primers
 A2 and J5 (designed based on the DNA sequences of the ß- operon) that allow the detection and the direct identification of the two liberibacter species.
- Primer sequences:

A2: 5'- TAT AAA GGT TGA CCT TTC GAG TTT- 3'

J5: 5'- ACA AAA GCA GAA ATA GCA CGA ACA A-3'

Molecular Diagnosis of BLOs DNA amplification program Primers A2 and J5

Add 2 μ l of the DNA preparation to 48 μ l of the following master mix.

Regeant	Initial concentration	Final concentration
DNTPs	5mM	0,2 MmM
MgCl ₂	50 mM	2 mM
PrimerA2	100mM	1µM
Primer J5	100mM	1µM
Tris-HCl pH 8.8		78 mM
BSA		200 µg/ml
$(NH_4)_2 SO_4$		17 mM
ß-mercaptoethanol		10 mM
Taq polymerase	5U/µl	2.5 U/µl
Water (PCR grade)		

DNA amplification program: 35 cycles, each at 92°C for 20 s, 62°C for 20s and 72°C for 45 s. Analysis by electrophoresis: 8 μ l from the PCR reaction are analyzed on 0.7% agarose gel. These primers direct the amplification of a 669 bp fragment from *Ca.* L. africanus and a 703 bp fragment from *Ca.* L. asiaticus.

Molecular Diagnosis of BLOs Primers used for multiplex PCR detection Primers GB1/GB3 and A2/J5

- Multiplex PCR was developed for routine detection of the three liberibacters in a single reaction mixture with the following two sets of primers: GB1/GB3 and A2/J5.
- A2: 5'- TAT AAA GGT TGA CCT TTC GAG TTT-3'
- J5: 5′- ACA AAA GCA GAA ATA GCA CGA ACA A −3′
- GB1: 5′- AAG TCG AGC GAG TAC GCA AGT ACT 3′
- GB3: 5′- CCA ACT TAA TGA TGG CAA ATA TAG -3′

Primers GB1/GB3 amplify *Ca*. L. americanus. Primers OA1+OI1/OI2c amplify *Ca*. L. asiaticus/*Ca*. L. africanus.

Molecular Diagnosis of BLOs Primers used for multiplex PCR detection Primers GB1/GB3 and A2/J5

Add 1 μ I of the DNA preparation to 39 μ I of the following master mix.

Regeants	Initial concentration	Final volume	
Buffer	10X	4 µl	
MgCl 50 mM	50 mM	1.6 µl	
DNTP	5 mM	1.6 µl	
Primer A2	100 µM	0.4 µl	
Primer J5	100 µM	0.4 µl	
Primer GB1	100 µM	0.4 µl	
Primer GB3	100 µM	0.4 µl	
Water		31.2 µl	
Taq DNA polimerase	5U/µl	0.3 µl	

DNA amplification program: 35 cycles each at 94°C for 30 s, 62°C for 30 s and 72°C for 60 s. Analysis by electrophoresis: 20 μl from the PCR reaction are analyzed on 1,2 % agarose gel.The amplicons obtained are: 1027 bp fragment for *Ca*. L. americanus and 703 bp fragment for *Ca*. L. asiaticus. **Molecular Diagnosis of BLOs** Primers used for duplex PCR detection Primers LSg2f/LSg2r and LAs/RA-s

- Duplex PCR Coletta-Filho, 2005 designed two sets of primers:
- To detect *Ca.* L. americanus:
- LSg2f TTAAGTTAGAGGTGAAATCC/LSg2r CAACTTAATGATGGCAAATA and
- To detect *Ca.* L. asiaticus:
- LAs-TGGTGATAGGGTGGATTTAG/RA-s CAACCTCGAAGAAAACAGGAC.

Molecular Diagnosis of BLOs Primers used for Real Time PCR detection Four primers and one TaqMan probe

- The Real Time PCR performs with four primers and one TaqMan probe combination based on the 16 rDNA sequences.
- HLBas: Specific to *Ca* Liberibacter asiaticus: 5' TCG AGC GCG TAT GCA ATA CG A - 3'
- HLB am: Specific to *Ca* Liberibacter americanus: 5'- GAG CGA GTA CGC AAG TAC TAG - 3'
- HLB af: Specific to *Ca.* Liberibacter africanus: 5′- CGA GCG CGT ATT TTA −3′
- HLBr: reverse primer, recognize the three Ca. spp.: 5' CTA CCT TTT TCT ACG GGA TAACGC-3'
- Hlbp: the common probe for the pimers, labed with FAM (6-carboxy-fluorescein) and with BHQ (Black Hole Quencher): AGA CGG GTG AGT AAC GCG
- COX: Positive internal control (cytochrome oxidase gene): 5'-GTA TGC CAC GTC GCA TTC CAG A-3 A -3'
- COXr: reverse: 5'- GGA TGCCCT TAG CAG TTT TGG C- 3'
- COXp: probe labeled with TET (tetrachloro-6-carboxy-fluorescein) and BHQ as quencher: ATC CAG ATG CTT ACG CTG

Molecular Diagnosis of BLOs Primers used for Real Time PCR detection Four primers and one TaqMan probe

- Specificity:
- HLBaspr (HLBas/HLBp/HLBr) and HLBafpr (HLBaf/HLBp/HLBr) detect the Asian and African strains, respectively.
- HLB aspr can detect African strains and the HLBafpr can detect Asian strains but with higher Ct values.
- HLBampr (HLBam/HLBp/HLBr) detect the Americans strains but can not the Asian and African strains.

Molecular Diagnosis of BLOs Primers used for Real Time PCR detection Four primers and one TaqMan probe

Add 2 μl of the DNA preparation to 23 μl of the following master mix.

Reagent	Initial concentration	Volume for one reaction	Final concentration
Buffer	10X	2.5 µl	1 X
MgCl ₂	50 mM	3 µl	6.0 mM
DNTPs	10 mM each	0.6 µl	0,24 mM
Taq polymerase (5 U/ µl)	5 U/µ	0.2 µl	1 unit
Primer mix HLBas/HLBr or HLBam/HLBr	2 µM each	3 µl	240 nM
HLB probe µM	1 µM	3 µl	120 nM
COX primer mix	2 µM each	3 µl	240 nM
COXp probe	1 µM	3 µl	120 nM
Molecular Grade Water		4.7	

DNA amplification program:

1)95°C for 20 seconds

2) 40 or 50 cycles at 95°C for 1 s. and 58°C for 40 s.

www.ippc.int,2007

Molecular Diagnosis of BLOs Primers used for PCR detection

Specificity	Primer designation	Sequence	Size (bp)
Papaya bunchy top bacterium	PBTF1 PBTR1	(5'AAAGGTTCTGATTGGTTAGGTG3') (5'ATCTTTATGCTCTCCAACTCCTC 3')	705
Yellow vine disease bacterium	YVI YV2 YV3	(5'GGGAGCTTGCTCCCCGG3') (5'CGCTACACCTGGAATTCTAC3') (5'GGTTACCTTTGTTACGACTTCA3')	643 1433
Citrus greening bacteria	OI1 OI2c	(5'GCGCGTATGCAATACGAGCGGCA3') (5'GCCTCGCGACTTCGCAACCCAT3')	1160

Molecular Diagnosis of BLOs Nucleotide sequence of primers used for the amplification of Candidatus (Ca.) Liberibacter species by end-point PCR and qPCR

HLB bacterium	Primer sequence (5'-3')*	DNA region amplified	Type of PCR	Reference
Ca. Liberibacter americanus	F: AGTCGAGCGAGTACGCAAGTACT R: CAACTTAATGATGGCAAATATAG	16S rDNA	Conventional PCR	Nageswara-Rao et al. 2013; Teixeira et al. 2005 <i>a</i>
americanus	F: GAGCAGTACGCAAGTACTAG Tp: AGACGGGTGAGTAACGCG	16S rDNA	qPCR	Kim and Wang 2009; W. Li et al. 2006; Li et al. 2009
	R: GCGTTATCCCGTAGAAAAAGGTAG			et al. 2000, El et al. 2009
Ca. Liberibacter asiaticus	F: CGCGTATGCAATACGAGCGGCA R: GCCTCGCGACTTCGCAACCCAT	16S rDNA	Conventional PCR	Nageswara-Rao et al. 2013; Teixeira et al. 2005 <i>a</i>
	F: TCGAGCGCGTATGCAATACG Tp: AGACGGGTGAGTAACGCG	16S rDNA	qPCR	Kim and Wang 2009; W. Li et al. 2006; Li et al. 2009
	R: GCGTTATCCCGTAGAAAAAGGTAG F: GCCGTTTTAACACAAAAGATGAATATC Tp: ATAAATCAATTTGTTCTAGTTTACGAC	$\mathit{hyv}_{\mathrm{I}}$ and $\mathit{hyv}_{\mathrm{II}}^{\dagger}$	qPCR	Morgan et al. 2012
Ca. Liberibacter africanus	R: ACATCTTTCGTTTGAGTAGCTAGATCATTGA F: GCGCGTATTTTATACGAGCGGCA R: GCCTCGCGACTTCGCAACCCAT	16S rDNA	Conventional PCR	Nageswara-Rao et al. 2013; Teixeira et al. 2005 <i>a</i>
	F: CGAGCGCGTATTTTATACGAGCG Tp: AGACGGGTGAGTAACGCG R: GCGTTATCCCGTAGAAAAAGGTAG	16S rDNA	qPCR	Kim and Wang 2009; W. Li et al. 2006; Li et al. 2009

Note: Two PCR systems have been used in HLB disease. The first is based on 16S rDNA sequence, using many sequences of primers and probes (Fujikawa and Iwanami 2012). Primer pair OI1 and OI2c is able to amplify the rDNA Las and Laf species. PCR, polymerase chain reaction; qPCR, quantitative polymerase chain reaction; HLB, Huanglongbing. *F, Forward primer; R, Reverse primer; Tp, Taqman probe. †Intragenic tandem-repeats sequence.

Valdés et al.,2016

PCR detection and identification of plant pathogenic bacteria

Name of primers and target DNA, sample treatment in the original article, variant of PCR protocol, reference and observations for plant pathogenic bacteria according to ISPP nomenclature. When the nomenclature reported in articles differs, the originally cited names of side of the table bacteria are indicated on the right

	Genus "Candidatus Liberibacter"				
Species/subspecies	Primer name Target DNA	Variant of PCR protocol	Sample (treatment)	Reference	Synonyms/observations
<i>"Ca.</i> L. africanus subsp. capensis"	OI1/OI2c 16S rRNA gene A2/J5 Ribosomal protein genes operon CAL1/J5 16S rRNA gene	Conventional	Plant (DNA extraction)	Garnier <i>et al.,</i> 2000	Amplification from <i>Calodendrum capense</i> but not from citrus hosts of huanglongbing disease.
"Ca. L. americanus"	OI1/OI2c 16S rRNA gene LSg2f/LSg2r 16S rRNA gene A2/J5 Ribosomal protein genes β-operon	Conventional	Plant (DNA extraction)	Coletta-Filho <i>et</i> <i>al.,</i> 2005	<i>"Candidatus</i> Liberibacter americanus" was proposed in 2005 (Teixera <i>et al.,</i> 2005) and thus is not included in the ISPP list (updated to 2004).
"Ca. L. americanus"	GB1/GB3 16S rRNA gene4	Conventional	Plant (DNA extraction)	Teixera <i>et al.,</i> 2005	
"Ca. L. asiaticus"	226-primer pair Specific DNA fragment (unknown)	Conventional	Plant (DNA extraction)	Hung <i>et al.,</i> 1999	
"Ca. L. asiaticus"	Rpl-FIP, Rpl-BIP, Rpl-F3, Rpl-B3 nusG-rp/KAJL-rpoB gene cluster	LAMP assay	Plant (DNA extraction)	Okuda <i>et al.,</i> 2005	
<i>"Ca.</i> L. africanus" <i>"Ca.</i> L. asiaticus"	fD2/rD1 Universal 16S rRNA gene	Conventional	Plant (DNA extraction) (Immunocapture)	Jagoueix <i>et al.,</i> 1994	
"Ca. L. africanus" "Ca. L. asiaticus"	fD1/rP1 Universal 16S rRNA gene OI1/OI2c O12c/OA1 O12c/OI1/OA1 16S rRNA gene	Conventional	Plant (DNA extraction)	Jagoueix <i>et al.,</i> 1996	PrimersOI1/OI2c and O12c/OI1/OA1 amplify both <i>Ca.</i> L. species, whereas O12c/OA1primers amplify prefentially " <i>Ca.</i> L. africanus". Distinction of the two species requires restriction analysis.

Genus *Ca.* Liberibacter

Palacio-Bielsa et al.,2009

PCR detection and identification of plant pathogenic bacteria

Name of primers and target DNA, sample treatment in the original article, variant of PCR protocol, reference and observations for plant pathogenic bacteria according to ISPP nomenclature. When the nomenclature reported in articles differs, the originally cited names of side of the table bacteria are indicated on the right

Genus Ca. Liberibacter

<i>"Ca.</i> L. africanus" <i>"Ca.</i> L. asiaticus"	OI2/23S1 16S-23S rDNA spacer region TRN1/OI4 Isoleucine genes/ 16S rRNA gene	Conventional	Plant (DNA extraction)	Jagoueix <i>et al.,</i> 1997	
<i>"Ca.</i> L. africanus" <i>"Ca.</i> L. asiaticus"	A2/J5 Ribosomal protein genes β -operon	Conventional	Plant (DNA extraction)	Hocquellet <i>et</i> <i>al.,</i> 1999	Direct distinction of the two species.
<i>"Ca.</i> L. africanus" <i>"Ca.</i> L. americanus" <i>"Ca.</i> L. asiaticus"	HLBr (reverse) (common) HLBaf, HLBam, HLBas (forward) (specific to each of the three species) 16S rRNA gene COXf, COXr Cytochrome oxidase gene Probe COXfp Cytochrome oxidase gene	Single Multiplex real-time (TaqMan)	Plant (DNA extraction)	Li <i>et al.,</i> 2006b	

Palacio-Bielsa et al.,2009

PCR detection and identification of plant pathogenic bacteria

Name of primers and target DNA, sample treatment in the original article, variant of PCR protocol, reference and observations for plant pathogenic bacteria according to ISPP nomenclature. When the nomenclature reported in articles differs, the originally cited names of side of the table bacteria are indicated on the right

Other Phloem-limited bacteria(Ca Phlombacter, PBT, YVD& BDB)

Other bacteria "Bacteria-like Organisms" (BLOs)					
		"Candidatu	s Phlomobacter fragaria	ie"	
Species	Primer name Target DNA	Variant of PCR protocol	Sample (treatment)	Reference	Synonyms/observations
<i>Ca.</i> Phlomobacter fragariae	Fra4/Fra5 16S rRNA gene	Conventional	Plant (DNA extraction)	Zreik et al., 1998	Bacterium within group 3 of the gamma subclass of <i>Proteobacteria</i> .
		Papaya bunchy	top disease of Cucurbit	a (PBT)	
Organism	Primer name Target DNA	Variant of PCR protocol	Sample (treatment)	Reference	Synonyms/observations
PBT (Gamma-3 proteobacterium associated with BLO disease)	YV1/YV2 YV1/YV3 16S rRNA gene	Conventional	Phloem tissue (DNA extraction)	Davis <i>et al.,</i> 1998	
		Yellov	v vine disease (YVD)		
Organism	Primer name Target DNA	Variant of PCR protocol	Sample (treatment)	Reference	Synonyms/bbservations
YVD (Gamma-3 proteobacterium associated with BLO disease)	YV1/YV2 YV1/Yv3 16S rRNA gene	Conventional	Phloem tissue (DNA extraction)	Avila <i>et al.,</i> 1998	
		Blood D	isease Bacterium (BDB)		
Organism	Primer name Target DNA	Variant of PCR protocol	Sample (treatment)	Reference	Synonyms/observations
Blood Disease Bacterium (remains unclassified)	OLI1/Y2 16S rRNA gene	Conventional	Bacteria (boiled)	Seal <i>et al.</i> , 1993	Ralstonia solanacearum and R. syzygii also amplified.
Blood Disease Bacterium (remains unclassified)	D2/B ¹ OL11/Z 16S rRNA gene	Conventional	Bacteria (untreated)	Boudazin <i>et al.,</i> 1999	

Palacio-Bielsa et al.,2009

DNA electrophoresis profile of *candidatus* Liberibacter asiaticus/africanus

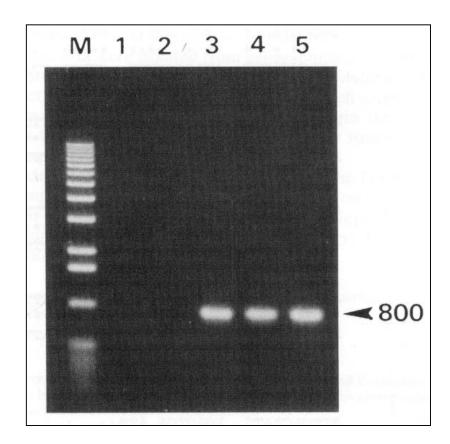


Image courtesy of J.M. Bové & Garnier

Real-time PCR Primers and probes

Primer	aqMan pri Primer	Sequence 5' - 3'	Target gene	Specific to	
Name	Mix	Synthesized by Integrated DNA Technologies, Inc.;	Turget gene	specific to	
i (unic	Name	Primer Purification = Standard Desalting			
HLBas	HLBas	TCG AGC GCG TAT GCA ATA CG	16S rDNA	Las	
primer	primer				
HLBr primer ¹	Mix	GCG TTA TCC CGT AGA AAA AGG TAG			
HLBam	HLBam	GAG CGA GTA CGC AAG TAC TAG	16S rDNA	Lam	
primer	primer				
HLBr	mix	GCG TTA TCC CGT AGA AAA AGG TAG	-		
primer ¹					
WG	WG ²	GCT CTC AAA GAT CGG TTT GAC GG	WG*	Psyllids	
primer	primer		gene		
WGr primer	Mix	GCT GCC ACG AAC GTT ACC TTC	C .		
¹ The HLE	Bas and HI	Bam primer mixes share one common primer, H	ILBr.		
² WG refe	ers to glyco	protein.			
Note: the	"r" in the	primer name HLBr and WGr denotes the reverse	e primer.		
		-	•		
Table 3. Probes for Real-time PCR (Synthesized by Integrated DNA Technologies, Inc.)					
HLBp probe 56-FAM/AGA CGG GTG AGT AAC GCG/3BHQ-1					
WGp probe 5-TET/TTA CTG ACC ATC ACT CTG GAC GC/3BHQ-2					

Note: Probes take 7 to 14 business days to arrive once ordered.

Pathogenicity test *Candidatus* Liberibacter americanus'

Mottling and stunted growth of Citrus sinensis cv. Madame Vinous 3 months after inoculation with *Candidatus* Liberibacter americanus' strain Brazil1(left) and a water inoculated control (right).

Pathogenicity test *Candidatus* Liberibacter americanus' Graft transmission

- Buds and growing points from zebra chip(ZC) disease of potato stems were used for grafting to potato cvs. Atlantic, Shepody, Russet Norkotah, and Frontier Russet and tomato cv. Roma in the greenhouse to confirm the presence of the ZC agent.
- Severe symptoms expressed in:
- A. Atlantic potato plant, and
- B. Roma tomato plant following graft inoculation with a scion from a field-grown potato plant with zebra chip from Texas.

Infected scion

Cryogenic storage `*Ca*. L. asiaticus'(CLas)

- Cells of '*Ca*. L. asiaticus' washed from the surface of Liber A agar medium were stored at -80°C in either:
- 1. Sterile 50% glycerol in water, or
- 2. sterile 50% glycerol in saline (0.85% NaCl).
- After 6 months, the cultures were removed from the freezer and streaked onto Liber A agar medium to assess viability.

Identification of the bacterial pathogens Mollicutes

Phloem-limited prokaryotes Disease diagnosis and pathogen diagnostics

Spiroplasma Phytoplasma

Tenericutes Plant Pathogenic Mollicutes

Domain Bacteria

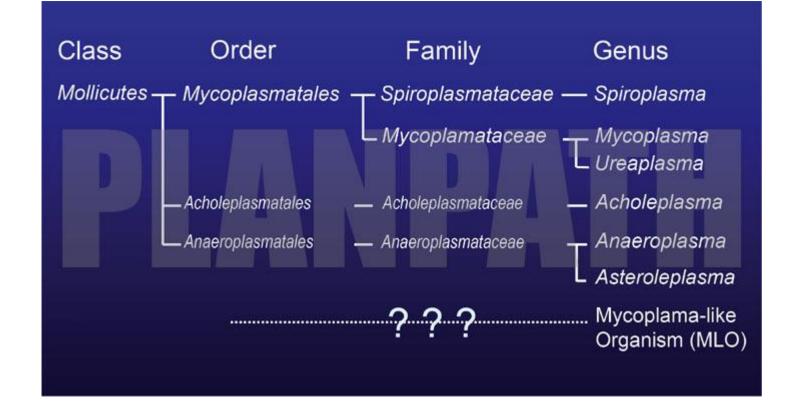
Phylum "Tenericutes"

- It now appears the Mollicutes developed from the Gram-positive Firmicutes, and they are now classified with them.
- The Mollicutes are now classified within phylum/division Tenericutes.
- Only, in the 2008 version of MeSH, the Mollicutes is classified as Gram-negative.

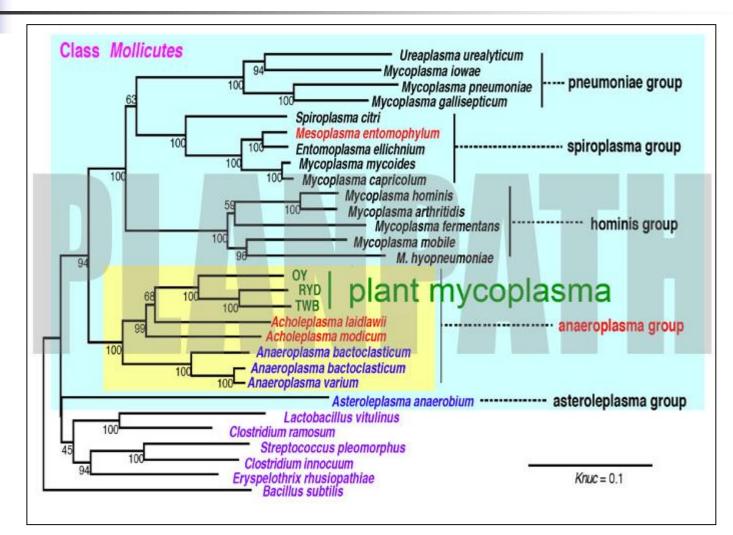
Medical Subject Headings (MeSH) is a huge controlled vocabulary or metadata system for the purpose of indexing journal articles and books in the life sciences.

The class Mollicutes Phytoplasmas & Spiroplasmas

- Together with acholeplasmas, mycoplasmas, spiroplasmas, and other cell wall less bacteria, phytoplasmas are classified in class *Mollicutes*.
- Mollicutes are distinguished phenotypically from other bacteria by:
- 1. Their minute size, and
- 2. Total lack of a cell wall.
- The class of Mollicutes include phytoplasmas and spiroplasma which are bacterial plant pathogens associated with insect vectors.
- Many are able to move about through gliding.


The Mollicutes Among the first organisms targeted for whole genome sequencing

- The *Mollicutes* were among the first organisms targeted for whole genome sequencing because they have relatively small genomes and many are pathogenic to:
- 1. plants,
- 2. animals, or
- 3. humans.


Modern mollicute systematics Polyphasic taxonomy

- Modern mollicute systematics has adopted a polyphasic taxonomy system, developed over the last two decades, which is based on:
- 1. Phenotypic,
- 2. Genotypic, and
- 3. Phylogenetic criteria for classification of members of the *Mollicutes*.
- Comprehensive phylogenetic studies based on 16S rRNA and other housekeeping genes have readily placed phytoplasmas in the class of *Mollicutes*.

Phylogenetic relationships among *Mollicutes* before molecular phylogenetical analyses

Phylogeny tree Mollicutes

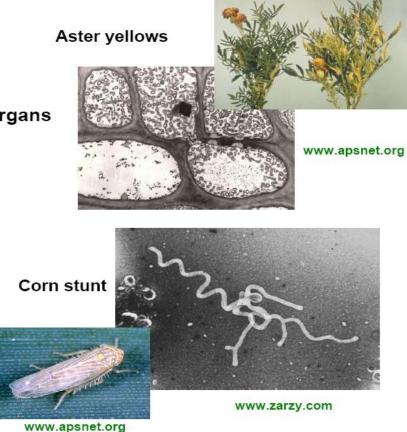
Characteristics of Mollicutes

- Mollicutes have developed from Gram-positive bacteria by a process of reductive evolution. They cluster within Gram-positive bacteria of the phylum Bacillota.
- These very small pleomorphic microorganisms, typically only 0.2-0.3 µm (200-300 nm) in size can pass through filters with 450-nm pore diameter.
- Cells with a thick three-layer unit membrane.
- Ribosomes similar to those in bacteria.
- Contain DNA and RNA.
- They also have the smallest genome of all bacteria.
- Multiply by binary division.
- Some species (spiroplasmas) can be cultured in artificial media.

Characteristics of Mollicutes

- In agar, spiroplasmas and mycoplasmas are often produce colonies that have a 'fried egg' appearance.
- Penicillin resistant and tetracycline sensitive.
- Unlike L-shaped bacteria, they do not revert to bacterial shape when grown in penicillin-deficient medium.
- Susceptible to infection by viruses.
- They do not kill their hosts but they produce predominantly chronic infections.

Mollicutes Phytoplasmas & Spiroplasmas


MOLLICUTES

Phytoplasma

- Cannot be cultivated
- Small genome (500-1000 kb)
- Greater than 200 diseases
- Pleomorphic
- Found in phloem sap, insect organs
- Leafhopper-transmitted

Spiroplasma

- Can be cultivated
- Small genome (500-1000 kb)
- Relatively few diseases
- Helical to branched filaments
- Motile but no flagella
- In phloem sap
- Leafhopper-transmitted
- Can live saprophytically

Cuppels Biology 418a

Mollicutes Phytoplasmas & Spiroplasmas

- Plant-infecting phytoplasmas and spiroplasmas are both found in the phloem tissue.
- Neither phytoplasmas nor spiroplasmas are transmissible by mechanical contact.
- They can only be transmitted by vectors, particularly leafhoppers.
- A few can be transmitted by psyllids.
- Transmissible pathogens which can induce systemic infection in their host plants.

Major characteristics Mollicutes

Classification	No. of recognized species	Genome size (kb)	Genome G+C (mol%)	Cholesterol requirement	Distinctive properties	Habitat
Mycoplasmataceae						
Genus I: Mycoplasma	107 (11) ^a	580-1350	23-40	Yes	Optimum growth 37°C	Humans and animals
Genus II: Ureaplasma	7	760-1170	27-30	Yes	Urease positive	Humans and animals
Entomoplasmataceae						
Genus I: Entomoplasma	6	790-1140	27-29	Yes	Optimum growth 30°C	Insects and plants
Genus II: Mesoplasma	12	870-1100	27-30	No	Optimum growth 30°C	Insects and plants
Spiroplasmataceae						
Genus I: Spiroplasma	34	780-2220	24-31	Yes	Helical filaments	Insects and plants
Acholeplasmataceae						
Genus I: Acholeplasma	14	1500-1650	26-36	No	Optimum growth 30-37°C	Animals and plant surfaces
Anaeroplasmataceae						
Genus I: Anaeroplasma	4	1500-1600	29-34	Yes	Obligate anaerobes, oxygen sensitive	Bovine-ovine rumen
Genus II: Asteroleplasma	1	1500	40	No		
Undefined taxonomic status						
Phytoplasma	ND^{b}	530-1185	23-29	ND	Uncultured in vitro	Insects and plants

Abbreviation: ND, not determined.

"The number of Candidatus species is given in parentheses and includes the hemoplasmas (*Eperythrozoon* and *Haemobartonella*) recently transferred to the genus *Mycoplasma* (Neimark et al., 2001).

^bThe taxonomic status of the uncultured phytoplasmas has not been finally defined; seven Candidatus *Phytoplasma* spp. have so far been published. Updated and modified from Razin et al. (1998).

The Prokaryotes (chapter 1.2.29),2006

Differentiation characteristics of Mollicutes

Property	Spiroplasma	Phytoplasma
Morphology	Helical	Non-helical
Cultured	Yes	No
UGA codon	Тгр	Stop
Functional sugar PTS	Yes	Probably not
Evolutionary relationship	Spiroplasma branch	Acholeplasma branch
Spiroplasma species(named)	31	-
Phytopathogenic Spiroplasma spp.	3	-
Characterized phytoplasmas	-	51
Phytoplasma groups	-	14
Plant diseases	<i>S. citri</i> : Citrus stubborn, many others <i>S. kunkelii</i> : Corn stunt <i>S. phoeniceum</i> : Periwinkle yellows	Over 300 in 98 families
Location	Sieve tubes	Sieve tubes
Insect vector	Leaf hoppers	Leaf hoppers, psyllids

Phylogenetic studies suggest that the common ancestor for phytoplasmas is Acholeplasma laidlawii, in which the triplet coding for tryptophan (trp) is UGG. In the other prokaryotes, enclosing mycoplasmas and spiroplasmas, trp is coded by UGA, while phytoplasmas use UGA as a stop codon.

Bové and Garnie, 1998

Mode of actions in Mollicutes

- Disease symptoms are consistent with the disturbance of plant hormone balance.
- For example, infected plants may be sterile or stunted or develop witches' brooms owing to the release of axillary buds from apical dominance.
- Internally, infected plants often have extensive phloem necrosis.

Identification of the bacterial pathogens Spiroplasma

Disease diagnosis and pathogen diagnostics

Distinguishing Properties

Property	Mollicutes (S. citri)	Eubacteria	Archae- bacteria
Cell wall	Absent	Present	Present*

Characteristics of the *Spiroplasma Spiroplasma* shares the simple metabolism, parasitic lifestyle, fried-egg colony morphology

- A genus of Mollicutes, without cell walls.
- Shares the simple metabolism, parasitic lifestyle, fried-egg colony morphology and small genome of other Mollicutes.
- A distinctive helical morphology, unlike Mycoplasma.
- Most spiroplasmas are found either:
- In the gut or hemolymph of insects, or
- In the phloem of plants.
- Spiroplasmas are fastidious organisms, which require a rich culture medium.
- Typically they grow well at 30°C, but not at 37°C.
- A few species, notably *Spiroplasma mirum*, grow well at 37°C (human body temperature), and cause cataracts and neurological damage in suckling mice.

Phylogenetic reconstructions Based on 16S rDNA sequence

- Phylogenetic reconstructions based on 16S rDNA sequence strongly support the closely related serogroups.
- If an isolate cannot be cultivated, then it can only be considered for *Candidatus* status.
- The ICSP Subcommittee on Taxonomy of *Mollicutes* recently recommended that 16S rDNA sequence information be published for all newly described species (ICSP Subcommittee, 11 July 2004 meeting).

Evolutionary relationship of spiroplasmas to other Eubacteria

- Phylogenetic analyses indicate that the class *Mollicutes* is a terminus in the evolution of Grampositive bacteria, arising from a gram-positive, low G+C content Clostridial lineage of the Eubacteria.
- Recent phylogenetic analyses using the amino acid sequence of phosphoglycerate kinase (Pgk) as a molecular marker indicate a similar derivation, but also suggest that modern mollicutes may be more closely related to the *Streptococcus/Lactobacillus* spp. than to *Clostridium* and *Bacillus* spp.

Evolutionary relationship of spiroplasmas to other Eubacteria

- This evolutionary pathway clearly shows that the *Spiroplasma* genus arose due to reductive evolution, rather than from a primitive organism that evolved prior to the development of the cell wall.
- Recent divergence within *Spiroplasma* can probably be explained by co-evolution with a range of hosts.

Redgassa and Gasparich,2006

The genus *Spiroplasma* The three characterized phytopathogenic spiroplasmas

- Most spiroplasmas appear to be commensals, but there are a few cases of mutualism or pathogenic.
- Spiroplasmas are most often found in association with insects and ticks.
- Description of the genus *Spiroplasma* began with:
- 1. The isolation and characterization of the causative agent of citrus stubborn disease *S. citri*.
- 2. The second described member of the genus *Spiroplasma*, *S. kunkelii*, causes corn stunt disease.
- 3. The third described member of the genus *Spiroplasma* is *S. phoeniceum*, causes aster yellow (or Periwinkle) disease.

Diseases caused by spiroplasmas

The three characterized phytopathogenic spiroplasmas

Spiroplasma citri	Citrus stubborn disease
Spiroplasma kunkelii	Corn stunt disease
Spiroplasma phoeniceum	Periwinkle yellows

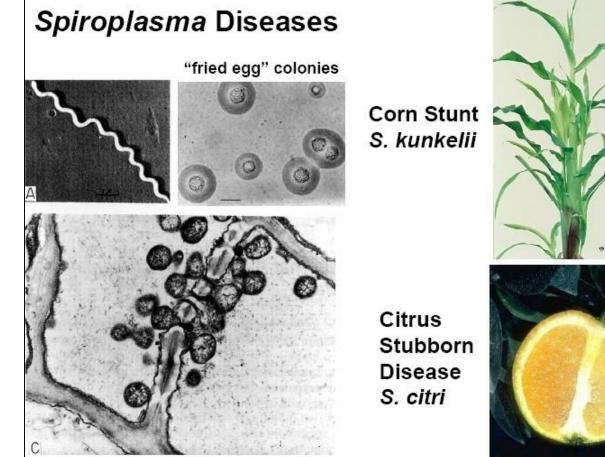
Spiroplasma citri causes stubborn disease(citrus little leaf disease) in Citrus spp. and diseases in other plants (non-rutaceous plant species such as periwinkles).

Ca. Phytoplasma phoenicium' (Associated with almond lethal disease)

The genus *Spiroplasma* Differential criteria used to characterize the *S. citri* from *S. kunkelii*

- Common features with Spiroplasma citri: Chemoorganotrophic, facultatively anaerobic metabolism, pleomorphic cells lacking cell walls and periplasmic fibrils, and bounded by a single membrane, motile, with helical morphology, and able to pass through a membrane filter of 220 nm pore size but not through 100 nm pores.
- Distinguished features of *Spiroplasma kunkelii*.
- Cells vary from helical filaments 100 to 150 nm diam. and 3 to 10 µm long, to non-helical filaments or spherical cells 0.3 to 0.8 µm diam.

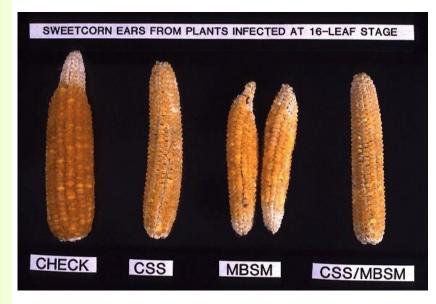
The genus *Spiroplasma* Common features of *S. kunkelii* with *Spiroplasma citri*


- Like *S. citri*, sterols are required for growth of *S. kunkelii*, thus cholesterol in amounts of 1 to 20 µg/ml is stimulatory.
- Glucose, fructose and lactose are fermented, and arginine is hydrolysed whether or not glucose is present in the medium. In the presence of glucose the reaction is masked at first by acid production. The alkali (red) reaction of the indicator is seen later.
- Urease and phosphatase are negative; coagulated serum not liquefied; film and spot reaction positive; guinea pig erythrocytes not haemadsorbed.
- Temperature range for growth 20° to 32°C; opt. temp. ca. 30°C.
 The G + C content of the DNA is 26 mol%+1.
- Genome mol. wt. 109. Type strain ATCC 29320.

Bradbury,1991

The genus *Spiroplasma* Differential characteristics between *S. kunkelii* and *S. citri*

- Spiroplasma kunkelii differs from *S. citri* in its:
- negative phosphatase reaction, its narrower temperature range and lower optimum, as well as in serological characters and polyacrylamide gel electrophoresis patterns of whole cell proteins (Whitcomb *et al.*,1986).
- This species forms subgroup 3 of group I of the genus *Spiroplasma* as tabulated in Whitcomb & Tully (1984).
- See also IMI Description 1046.


Disease symptoms

@ Copyright APS Press

Corn stunt disease symptoms *Spiroplasma kunkelii*

- Symptoms on sweet corn ears.
- Ieft to right:
- 1. control;
- infected with *S. kunkelii* (CSS);
- with maize bushy stunt mycoplasma (MBSM); and
- with both diseases (transmitted by leafhopper *Dalbulus maidis*).

Phloem discoloration and necrosis caused by *Spiroplasma* infection

At least six species of leafhoppers can transmit *Spiroplasma citri*.

Spiroplasma species and their hosts and disease manifestations

Principal host	Disease manifestations
Panorpa helena scorpion fly	U
Bees and flowers	"May disease" of bees
Cantharis beetle	U
Calystegia hederaceae flowers	U
Chrysops sp. deerfly	U
Dicots and Circulifer leafhoppers	Citrus stubborn
Cotinus beetle	U
Ellichnia corrusca firefly	U
Aedes mosquito	U
Diabrotica undecimpunctata corn rootworm beetle	U
Culex annulus mosquito	U
Insects and flowers	U
Tabanus gladiator horsefly	U
	U
	U
	U
	Corn stunt
	U
	U
	U
	U
-	Honey bee spiroplasmosis
	Suckling mouse cataract disease
	U
	Ū
Catharanthus roseus	Periwinkle disease
	U
	Male lethality ^b
	U
-	Ū
	Ŭ
	Ŭ
Haematopta horsefly	Ŭ
	U
	Bees and flowersCantharis beetleCalystegia hederaceae flowersChrysops sp. deerflyDicots and Circulifer leafhoppersCotinus beetleEllichnia corrusca fireflyAedes mosquitoDiabrotica undecimpunctata corn rootworm beetleCulex annulus mosquitoInsects and flowersTabanus gladiator horseflyTabanus gladiator horseflyEristalis fly and flowersIxodes pacificus ticksMaize and leafhoppersPhoturis pennsylvanicus firefly beetleLeptinotarsa decemlineata (Colorado potato beetle)Tabanus nigrovittatusBeesHaemaphysalis rabbit ticksMonobia waspHybomitra opaca horseflyCatharanthus roseusPachydiplax longipennis dragonflyDrosophila willstoniAedes mosquitoEristalis arbustorum syrphid flyTabanus abdominalis limbatinervis horseflyCulex tritaeniorhynchus mosquito


The Prokaryotes (chapter 1.2.30),2006

Isolation and Culturing 1. Isolation of *Spiroplasma citri* from fruit aspetically without filtration

- *S. citri* can be isolated from seeds or fleshy tissue in small fruits from stubborn suspect trees. The procedure is as follows:
- Wash the fruit in a 1% sodium hypochlorite solution or in soap and water, and dry in the open air or with a sterile towel.
- First flame the equator of the fruit, then cut into the fruit to an approximate depth of 1.25 cm completely around the equator.
- Twist the two halves of the fruit apart.
- Pick out visible aborted seeds with sterile tweezers and place them in a tube of 10 ml of media (use one seed per tube to avoid excessive acid).
- Plug the tubes and incubate at 30-32°C.
- Look for colour change as shown in next Fig. within 7-14 days.

Isolation of *Spiroplasma citri* from fruit aseptically without filtration

- Diagnosis for stubborn disease in culture medium.
- The presence of *Spiroplasma citri* causes a pH change and turns the phenol red indicator dye from reddishorange (right) to amberyellow (left).
- Confirmation should be made by taking a drop of liquid from the tube on the left, and observing it under a dark-field microscope.

Isolation of *Spiroplasma citri* from fruit aseptically without filtration

- Examine a drop from each tube showing a colour change under a dark-field microscope for the presence of spiroplasma.
- In an actively growing culture the number of small helical organisms is high.
- Similar aseptic techniques are possible throughout the year using albedo tissue (preferably from immature fruits) and other phloem-containing tissues such as the columella, provided adequate surface sterilization is possible.
- Ten to 20 ml of media may be needed to reduce the effect of inhibitors.

Isolation and Culturing 2. Isolation of *Spiroplasma citri* from plant tissues using filtration

- This is the method of choice for most young leaves, stems and other specimens:
- If the sample is dirty, wash away as much dirt as possible in running water.
- Soak the specimen in 1% sodium hypochlorite for five minutes.
- Rinse in sterile distilled water.
- Place specimen in about 5 ml of medium in a sterile flat dish (such as one-half of a Petri dish) and chop with a sterile razorblade. This step can also be applied to aborted seed or columella tissue.
- After five minutes or more, filter the medium containing the chopped tissue through a 0.45 µm filter, using slight suction. If penicillin-resistant bacteria are present, finer filters of 0.2 or 0.22 µm may be needed.

Isolation and Culturing Isolation of *Spiroplasma citri* from plant tissues using filtration

- Transfer aseptically 1 ml of the filtrate to about 10 ml of medium; repeat to make duplicate tubes. If filtrate is limited, use 0.3-3 ml of medium. It is best to make more than one dilution because of inhibitors.
- Incubate tubes at 30-32°C until a colour change is noted. If the organism is present, colour will change in seven to 14 days, and tubes should be held for three to four weeks. Always have known positive controls for comparison.
- Whenever colour change is noted, examine a drop from each tube under a dark-field microscope for the presence of spiroplasmas.
- Transfer cultures promptly to avoid deterioration and store or lyophilize as desired.

Media for spiroplasmas Serum and serum-free media

- Serum is probably the most important supplement of the culture medium.
- Fetal bovine serum (FBS) has proved superior for most spiroplasmas.
- Serum-free media were also formulated for the culture of some fastidious strains of corn stunt spiroplasma, *Spiroplasma kunkelii*.
- Serum-free media were contained bovine serum albumin and lipids (fatty acids, cholesterol, phosphatidic acid, and phospholipids).
- Davis *et al.*,1988 recommend medium LD59 for *S. kunkelii* because some strains make poor growth in media containing serum.

A modified medium for Spiroplasma citri

- Horse serum or cholesterol was required for growth.
- The medium is a modification of that of Saglio *et al.*,1971 and Fudl-Allah, Calavan and Igwegbe,1972.
- The yeast extract is omitted (Igwegbe,1978).
- The foetal bovine serum may give better results than horse serum, and the serum should be mycoplasma screened by the manufacturer.

Distilled water	780 ml
PPLO broth	21g
Fructose	1g
Glucose	1g
Sucrose	10g
Sorbitol	50g
Tryptone	1g
Phenol red (1 mg/ml)	10 ml
Foetal bovine (or	100 ml
horse) serum	
Penicillin G (25mg/ml)	25 ml

Media for Rapid Growth of *Spiroplasma citri* and *Spiroplasma kunkelii* Media LD8, LD8A and LD59

- Several media (LD series) were developed for cultivation of *Spiroplasma citri* and *Spiroplasma kunkelii*.
- The maximum titer of *S. citri* grown in one of the new media, LD8, reached over 6×10⁹ colony-forming units per milliliter, with an estimated doubling time of about 4 hr at 31°C.
- In another medium, LD8A, *Spiroplasma kunkelii* grew to a titer of about 2×10⁹ CFU/ml, with a doubling time of 11-12 hr at 31°C.
- Media LD8 and LD8A were highly suitable for primary isolation of *S. citri* and *S. kunkelii*, respectively, from diseased plants.

C-3G and modified C-3GH(HEPES buffer added) media *Spiroplasma kunkelii*

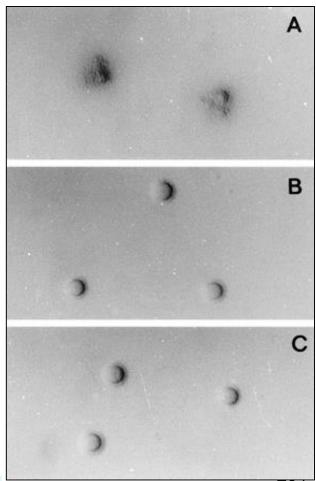
- The C-3G medium of Liao & Chen may be used for isolation and growth of *Spiroplasma kunkelii* or this may be modified by addition of HEPES(N'-2-hydroxyethyl piperazine -N-2-ethanesulfonic acid) buffer, giving C-3GH (M.J. Davis, 1990).
- Gamma globulin-free horse serum is heat inactivated at 56°C for 40 min, filter sterilized and added to the other ingredients after they have been mixed, adjusted to pH 7.4, autoclaved and cooled.

Distilled water	75 ml
Difco PPLO broth base	1.5g
HEPES buffer	1.4 g
Sucrose	12g
Phenol red (0.1%	1 ml
aqueous sol.)	
gamma globulin-free	20 ml
horse serum	

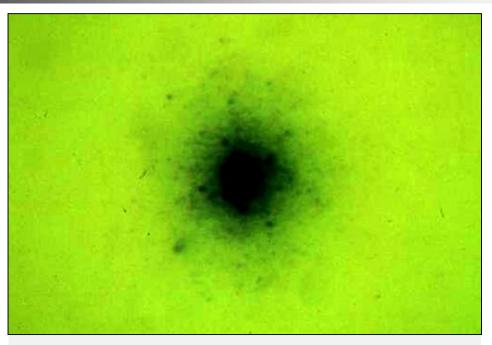
Solidified with 0.8% agar. If desired, 80,000 units of penicillin-G may be added to inhibit unwanted bacteria.

LD59 for *S. kunkelii*

LD59 contains:


- 15 g Difco PPLO broth base, 1 g fructose, 120 g sucrose, 0.6 g Larginine, 0.6 g L-asparagine, 0.4 g L-methionine, 0.4g a-ketoglutarate, 0.4 g pyruvate, 2 g lactalbumin hydrolysate, 7 g HEPES buffer and 200 ml BSA-lipid solution.
- The BSA-lipid solution is prepared from:
- 0.66 mls Lipid stock I (0.6 ml Tween 80, 20 mg phosphatidic acid, 0.075 ml linoleic acid, 60 mg palmitic acid, and 40 mg cholesterol dissolved in 2 ml absolute alcohol), and
- 3.5 ml Lipid stock II (12 mg lysophosphatidyl choline from egg yolk, 12 mg lysophosphatidyl choline from soybean, and 20 mg phosphatidyl choline from egg yolk dissolved in 10 ml absolute alcohol), which are dissolved in a solution of 9 g bovine serum albumin in 200 ml distilled water at 37°C.

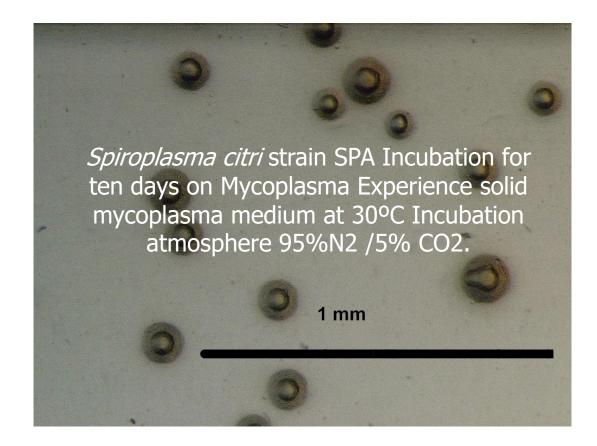
LD59 for *S. kunkelii*


- Growth is better in broth media, but for examination of colonies and selection for purity, semi-solid media can be prepared by adding agar at 0.8-2.2%.
- Colonies on the lower concentrations of agar are diffuse and granular in appearance, while on media with 2.25% agar they are of the classical 'fried egg' type with a denser central zone.
- Maintenance in culture in any of the known media leads after a time to loss of natural pathogenicity to plants, which may be accompanied by an increase in the deleterious effects on leafhoppers experimentally inoculated with the cultured organism.
- Growth is inhibited by homologous antiserum and by tetracycline antibiotics but not by penicillin.

Colony morphology Spiroplasma kunkelii

- On serum-free medium LD59,
- non-helical strains of *S. kunkelii* produce minute 'fried egg' colonies (approximately 0.2 mm in diameter after 20 days' incubation),
- 2. while partially helical strains produce small colonies with granular centres surrounded by satellite colonies.

Spiroplasma colony Spiroplasma shares fried-egg colony morphology



Spiroplasma colonies grown on agar - solidified medium. Note satellite colonies.

Photo: J. Fletcher

The Prokaryotes (chapter 1.2.30),2006;...

Spiroplasma colony Spiroplasma shares fried-egg colony morphology

mycoplasma-exp.com

Yolk media for cultivation of spiroplasmas *S. citri* and *S. kunkelii*

- Citrus stubborn spiroplasma (*S. citri*) and honeybee spiroplasma grew favorably in C-3G basic medium containing 5% yolk fluid or 10% amniotic fluid.
- The serum constituent in serum media could be substituted by yolk, but yolk could not substitute for PPLO broth or sucrose.
- Yolk solution clarified by heating at 56°C graus for 30 min, centrifuging at 10,000 rpm for 30 min, and membrane (0.45 micron) filtering, was slightly better for growth than unclarified yolk solution which hindered microscopic observation.
- *S. citri* grew better in a media with low yolk content (1.25-0.65%), while *S. kunkelii* grew better in 2.5-5.0% yolk medium formulated with phosphate buffer solution (0.01M) at pH 7.2-7.6. SR-3 grew equally well in any medium containing over 0.65% yolk.
- The yolk media were much cheaper than serum media.

Isolation and culture of *S. citri* **In brief**

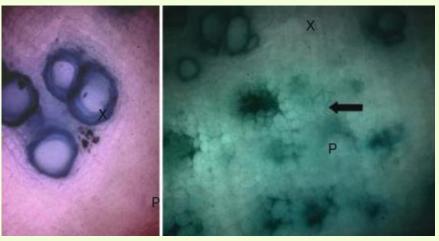
- Petiole leaf midribs or fruit columella were excised, surface disinfested and diced with a sterile razor blade in 5 ml of LD8 broth medium, passed through a 0.45-µm filter, and incubated at 30°C.
- The presence of *S. citri* was confirmed after 3 to 14 days by examining 10 µl of culture medium by darkfield microscopy at ×400 to 1000 for the presence of motile, helical *spiroplasma*.
- Fried-egg shape colonies were obtained when *S. citri* was subcultured on C-3G solid medium.

Purification *Spiroplasma* spp.

- A pure culture is obtained by initial filtration through a 220 nm filter, which will block most microbes except mollicutes.
- The filtrate is then used in a dilution cloning technique to isolate a pure culture.
- This procedure is repeated three times.
- The emerging strain is then designated as the representative strain, which, if the taxon is named, will become the type strain.

Cell characteristics

- Like phytoplasmas and mycoplasmas, spiroplasmas are:
- Pleomorphic;
- Lack a cell wall;
- Sensitive to tetracycline, and
- Resistant to penicillin.

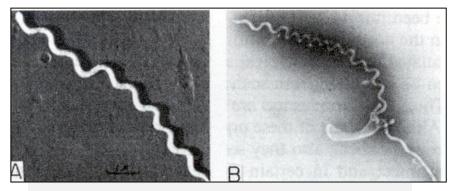

Detection of S. citri

Dark-field or phase contrast microscopy Fluorescent microscopy using Dienes', DAPI, or other fluorescing stains Electron microscopy Serology Ribosomal-sequence PCR DNA-DNA hybridization

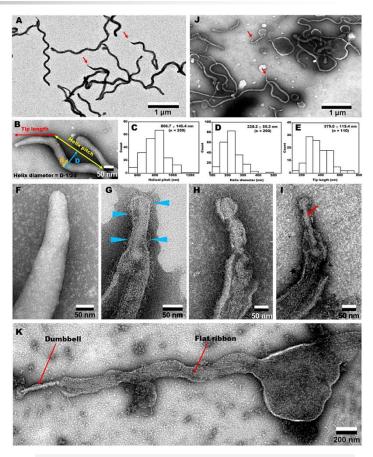
DAPI 4',6-diamidino-2-phenylidine; a fluorescent DNA binding dye; used to label chromosomes.

Detection of Spiroplasmas Dienes' stain

- Horseradish root cross section, stained with Dienes' stain.
- Large, thick-walled xylem vessels of both healthy (Panel A) and diseased (Panel B) plants retain the blue dye.
- Blue stained cell patches (arrow) occur in the phloem region in diseased plants only.



The Prokaryotes (chapter 1.2.30),2006


Detection of Spiroplasmas The fluorescent dye DAPI

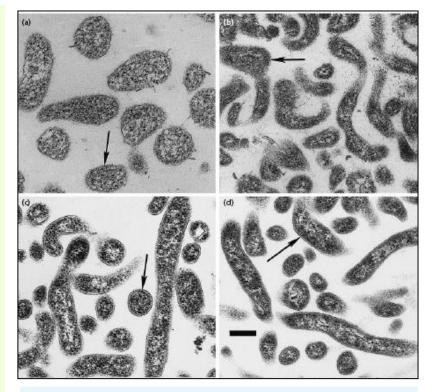
- The fluorescent dye DAPI (4',6-diamidino-2phenylindole) binds to DNA in a nonspecific manner.
- Although the binding is nonspecific, labeling host DNA in the nucleus and organelles as well, the dye has been used widely for detection of mollicutes within plant tissues.

Cell characteristics Negative-staining EM images of the cells *Spiroplasma* cells

The EM images of negativelystained intact cells revealed helical cell shapes.

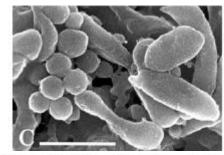
A dumbbell-like structure is connected by a flat ribbon.

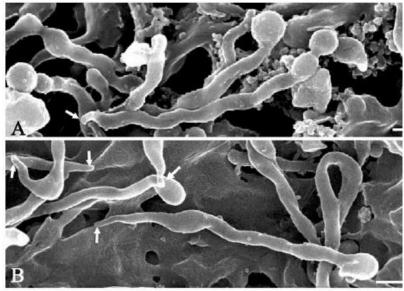
711


Liu *et al.*,2017;....

Electron micrograph of some Spiroplasma cells Some unusual strains

Corn Stunt Spiroplasma in phloem cells.

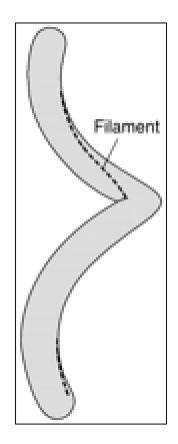

- Some strains were unusual in that they often appeared to grow in a non-helical form when examined by conventional dark-field techniques.
- Electron microscopic observations revealed (Fig. 1a, b) that the cells were bound by a single cytoplasmic membrane.



Arrows indicate unit membrane. Bar, 200 nm.

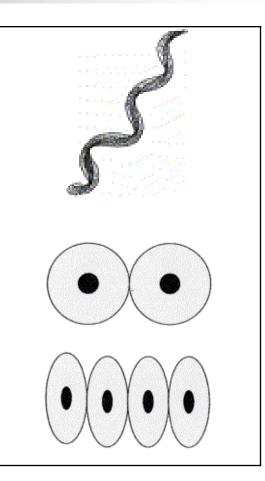
Pili-like structures in plantpathogenic spiroplasmas

- Scanning electron microscopy (SEM) preparations of cultured.
- A. Spiroplasma kunkelii,
- B. S. melliferum,
- c. S. citri.
- Note:
- 1. the tip structures (arrows),
- 2. **globular parts** of the helix (A, B),
- 3. a bud-cluster (C).


Ammar et al.,2004

Motility *Spiroplasma* : a swimming helix

- Spiroplasmas swim by dynamically changing the conformation of their helical body, sometimes propagating contractile waves that travel the length of the cell.
- Spiroplasma lacks periplasm providing rigidity for the cell.
- Instead, the cell's helical shape is defined by a protein ribbon lying just under the membrane, and probably anchored to it.
- This ribbon is composed of seven protofilaments connected side by side.
- Each protofilament is comprised of a linear chain of subunits that can take on multiple conformations.


The motility of *Spiroplasma*

- In Spiroplasma, the cell morphology can be viewed as a two-component system:
- 1. The cholesterol-containing unit membrane defines the cell body
- 2. The protein ribbon.
- The ribbon in *Spiroplasma* is the main source of the cell's rigidity and defines the cell's morphology.
- As such, the membrane shape will conform in some manner to the shape of the protein ribbon.

Motility and helicity: Role of the cytoskeleton and associated proteins

- Spiroplasma cytoskeleton: Membrane-bound ribbon following the shortest helical line on the cellular coil, and composed of several wellordered fibrils.
- The 59 kDa fibril protein forms tetramer subunits which assemble into flat fibrils.
- The subunits in the fibrils undergo conformational changes from circular to elliptical, resulting in length changes of the fibrils.

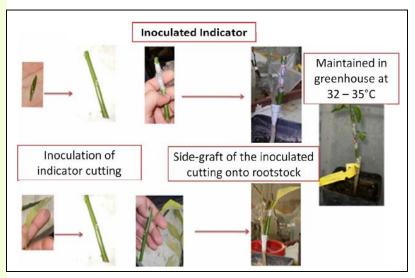
Spiralins

- Spiralins are chemically bound to Spiroplasma-associated fibrils (SpFs) and are separated with difficulty.
- SpFs are unique internal fibrils of spiroplasmas with a molecular weight of 55 kDa.

Biological indexing methods Suitable conditions for pathogen transmission

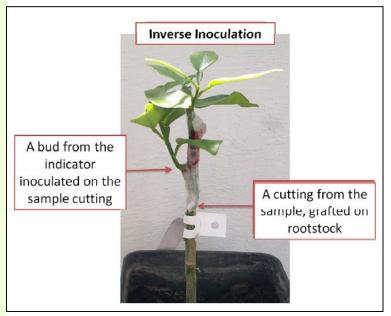
- Three different methods of biological indexing:
- 1. traditional method,
- 2. inoculated indicator, and
- 3. inverse inoculation
- were conducted and compared in order to evaluate the most efficient method and the most suitable conditions for transmission of the *S. citri* in the greenhouse.

Biological indexing methods Suitable conditions for pathogen transmission


- For that, young shoots with small emerging leaves from symptomatic trees were collected to be used in these trials.
- Positive control trees, as well as negative control from healthy trees, were also included in the tests.
- Different aspects were evaluated, including:
- 1. the successful transmission rate, and
- 2. the time required for the appearance of stubborn symptoms on the indicator plant.

Biological indexing methods Suitable conditions for pathogen transmission **1. Traditional Method**

- Side grafting and leaf batch grafting were performed;
- Collected budwood (stem pieces that were 5-7 mm in diameter from Stubborn infected trees) were side-grafted onto the one-year-old Madame Vinous seedlings (stubborn indicator plant).
- After sealing the graft with parafilm, and then labeling and enclosing it inside a plastic bag, the inoculated plants and the negative controls were maintained in a warm, conditioned greenhouse.
- After 1-2 weeks, the plastic bags were opened at the top to reduce humidity and observations of the symptoms were carried out weekly.


Biological indexing methods Suitable conditions for pathogen transmission **2. Inoculated Indicator**

- Wood cuttings containing 4-6 nodes of the indicator "Madame Vinous" were firstly inoculated by chip budding or by leaf inoculation using the bark tissue collected from the sample sources; then, the inoculated indicator cuttings were grafted onto Sour orange rootstock and enclosed inside a plastic bag in order to keep high humidity inside.
- The inoculated plants were maintained in a warm conditioned greenhouse.
- After ten days, the plastic bags were opened at the top in order to reduce the inside humidity, grafting success was evaluated and symptoms observations were carried out weekly.

Biological indexing methods Suitable conditions for pathogen transmission **3. Inverse Inoculation**

- This new technique was set up in order to overcome the limitations of the traditional indexing related to the low concentration of *S. citri* in the stubborn infected sample and the long time needed for the diffusion of the pathogen in the plants.
- This method is the reverse of the inoculated indicator method, as it consists of the inoculation of a cutting from the sample to be tested with a bud from Madame Vinous sweet orange indicator, and then the obtained inoculated cutting was grafted onto sour orange rootstock.
- Symptoms observations were carried out weekly on leaves emerging from the indicator bud.

Spiroplasma Systematics 1. Serological classification system

- The serological classification scheme places new isolates into serological groups or subgroups based on the degree of surface antigen cross reactivity.
- Originally, members of a single serogroup demonstrated:
- 1. Strong serological relatedness, and had
- 2. Genomes that exhibited more than 70% DNA-DNA homology.
- Serological relatedness was accepted as a surrogate for DNA-DNA reassociation analyses and formed the basis for the *Spiroplasma* species concept.

Redgassa and Gasparich,2006

Spiroplasma Systematics Serological classification system

- Species of the genus *Spiroplasma* have been traditionally classified into 34 groups based on crossreactivity of surface antigens.
- Three of the serogroups contain closely related strain complexes that are further divided into subgroups:
- 1. Group I has nine subgroups, and
- 2. Groups VIII and XVI have three subgroups each.
- Most groups and subgroups have been given binomial names.

Spiroplasma Systematics Serological classification system

- Phylogenetic reconstructions based on 16S rDNA sequence strongly support the closely related serogroups.
- To date, 36 Spiroplasma species have been fully characterized and given binomial names.
- Hundreds of other isolates have been partially described, and some of these undoubtedly represent new *Spiroplasma* species.

Revised classification of Spiroplasmas

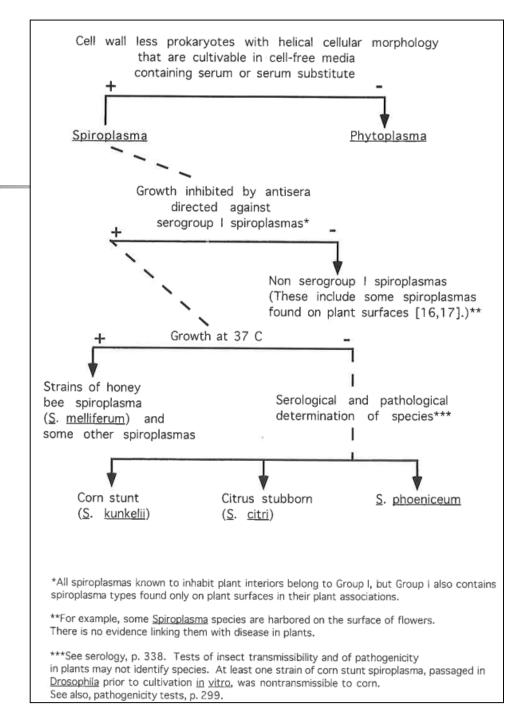
Strains were examined by standard methods for their ability to utilize glucose, arginine and urea.

Williamson et al.,1998

Group	Species	Representative strain (ATCC)	G+C (±1 mol%)	Glucose/ arginine	Host/habitat
1-1	S. citri	Maroc-R8A2 ^T (27556)	26	+/+	Phloem/leafhopper
1-2	S. melliferum	BC-3 ^T (33219)	26	+/+	Honey bee
I-3	S. kunkelii	E275 ^T (29320)	26	+/+	Phloem/leafhopper
I-4		277F (29761)	26	+/+	Rabbit tick
I-5		LB-12 (33649)	26	+/-	Plant bug
I-6	S. insolitum	M55 ^x (33502)	26	+/-	Flower surface
I-7		N525 (33287)	26	+/+	Plant surface
I-8	S. phoeniceum	P40 ^T (43115)	26	+/+	Phloem/vector
п		DW-1 (43153)	26	ND	Drosophila
III	S. florícola	23-6 ^T (29989)	26	+/-	Plant surface
IV	S. apis	B31 ¹ (33834)	30	+/-	Honey bee
v	S. mirum	SMCA ^T (29335)	30	+/+	Rabbit tick
VI	S. ixodetis	Y32 ^T (33835)	25	+/-	Ixodid tick
VII	S. monobiae	MQ-1 ^T (33825)	28	+/-	Monobia wasp
VIII-1	S. syrphidicola	EA-1 ¹ (33826)	30	+/+	Syrphid fly
VIII-2	S. chrysopicola	DF-1 ^T (43209)	29	+/-	Deer fly
VIII-3		TAAS-1 (51123)	31	+/+	Horse fly
IX	S. clarkii	CN-5 ^T (33827)	29	+/+	Green June beetle
X	S. culicicola	AES-1 ^T (35112)	26	+/-	Mosquito
XI	S. velocicrescens	MQ-4 ^T (35262)	26	+/-	<i>Monobia</i> wasp
XII	S. diabroticae	DU-1 ^T (43210)	25	+/-	Beetle
XIII	S. sabaudiense	Ar-1343 ^T (43303)	29	+/-	Mosquito
XIV	S. corruscae	EC-1 ⁷ (43212)	26	+/-	Horse fly/beetle
XV		I-25 (43262)	26	+/-	Leafhopper
XVI-1	S. cantharicola	CC-1 ^T (43207)	26	+/-	Cantharid beetle
XVI-2		CB-1 (43208)	26	+/-	Cantharid beetle
XVI-3		Ar-1357 (51126)	26	+/-	Mosquito
XVII		Tab 4c (700271)	25	+/-	Horse fly
XVIII	S. litorale	TN-1 ^T (43211)	25	+/-	Horse fly
XIX	S. lampyridicola	PUP-1 ^T (43206)	25	+/-	Firefly
XX	S. leptinotarsae	LD-1 ^T (43213)	25	+/+	Colorado potato beetle
XXI		W115 (43260)	24	+/-	Flower surface
XXII	S. taiwanense	CT-1 ¹ (43302)	26	+/-	Culex mosquito
XXIII	S. gladiatoris	TG-1 ^T (43225)	26	+/-	Horse fly
XXIV	S. chinense	CCH ^T (43960)	29	+/-	Flower surface
XXV	S. diminutum	CUAS-1 ¹ (49235)	26	+/-	Culex mosquito
XXVI	S. alleghenense	PLHS-1 ^T (51752)	31	+/+	Scorpionfly
XXVII	S. lineolae	TALS-2 ^T (51749)	25	+/-	Horse fly
XXVIII	S. platyhelix	PALS-1 ^T (51748)	29	+/+	Dragonfly
XXIX		TIUS-1 (51751)	28	+/-	Tiphiid wasp
XXX		BIUS-1 (51750)	28	+/-	Flower surface
XXXI	S. montanense	HYOS-1 ^T (51745)	28	+/+	Horse fly
XXXII	S. helicoides	TABS-2 ^T (51746)	27	+/-	Horse fly
XXXIII	S. tabanidicola	TAUS-1 ⁺ (51747)	26	+/-	Horse fly
XXXIV		BARC 1901 (700283)	25	+/-	Horse fly
		BARC 2649 (700284)	28	+/+	Horse fly

Spiroplasma species and/or representative strains by serogroup¹

Serogroup ²	Binomial Name	Host(s)	Disease
1	Spiroplasma citri	Dicots, leafhoppers	Citrus stubborn
-2	S. melliferum	Honey bees	Honeybee spiroplasmosis
-3	S. kunkelii	Maize, leafhoppers	Corn stunt
-4	<i>S.</i> sp.	Rabbit ticks	NK ⁴
-5	<i>S.</i> sp.	Green leaf bugs	NK
6	S. insolitum	Eristalis flies, flowers	NK
7	<i>S.</i> sp.	Coconut palms	NK
-8	S. phoeniceum	Catharanthus roseus	Periwinkle disease
-9	S. penaei	<i>Penaeus vannamei</i> shrimp	Shrimp disease
I	S. poulsonii	Drosophila	Sex ratio trait
Ι	S. floricola	Insects, flowers	Beetle "lethargy"
/	S. apis	Bees, flowers	May disease
	S. mirum	Rabbit ticks	Suckling mouse cataract disease
[S. ixodetis	Ixodes pacificus ticks	NK
II	S. monobiae	<i>Monobia</i> wasps	NK
III-1	S. syrphidicola	Eristalis arbustorum flies	NK
III-2	S. chrysopicola	Crysops sp. Flies	NK
III-3	<i>S.</i> sp.	Horse fly	NK
K	S. clarkii	Cotinus beetles	NK
	S. culicicola	Aedes mosquitoes	NK
I	S. velocicrescens	<i>Monobia</i> wasps	NK
II	S. diabroticae	Diabrotica undecimpunctata beetles	NK
III	S. sabaudiense	Aedes mosquitoes	NK
IV	S. corruscae	Ellychnia corrusca beetles, horse flies	NK
V	<i>S.</i> sp.	Leafhopper	NK
(VI-1	S. cantharicola	Cantharid beetle	NK


XVI-2	<i>S.</i> sp.	Cantharid beetle	NK
XVI-3	<i>S.</i> sp.	Mosquito	NK
XVII	S. turonicum	Horse fly	NK
XVIII	S. litorale	Tabanus nigrovittatus	NK
XIX	S. lampyridicola	<i>Photuris pennsylvanicus</i> beetles	NK
XX	S. leptinotarsae	Leptinotarsa decemlineata	NK
XXI	<i>S.</i> sp.	Prunus sp. flowers	NK
XXII	S. taiwanense	Culex tritaeniorhynchus	NK
XXIII	S. gladiatoris	Tabanus gladiator	NK
XXIV	S. chinense	Calystegia hederaceae	NK
XXV	S. diminutum	<i>Culex</i> mosquito	NK
XXVI	S. alleghenense	Scorpionfly	NK
XXVII	S. lineolae	Horse fly	NK
XXVIII	S. platyhelix	Dragonfly	NK
XXIX	<i>S.</i> sp.	Tiphiid wasp	NK
XXX	<i>S.</i> sp.	Flower surface	NK
XXXI	S. montanense	Horse fly	NK
XXXII	S. helicoides	Horse fly	NK
XXXIII	S. tabanidicola	Horse fly	NK
XXXIV	<i>S.</i> sp.	Horse fly	NK
Ungrouped ⁵	S. atrichopogonis	Biting midge	NK

¹Table modified from Williamson *et al.* (1998) and Gasparich (2002), ² Serogroups are designated by Roman numerals; subgroups are indicated by hyphenated numbers, ⁴NK, none known, ⁵No group number yet assigned to this serologically distinct species.

Redgassa and Gasparich,2006

Key to differentiate Spiroplasma from Phytoplasma

Schaad et al., 2001

Differentiation Tests Species-level tests

- At group level:
- Growth inhibition test (GI)
- At subgroup level:
- Deformation test (DF)
- Metabolic inhibition test (MIT)

Growth inhibition test (GI) With polyclonal and monoclonal antibodies

- In order to calibrate the dilutions of antibodies and *S. citri* cultures necessary to prevent spiroplasma growth, inhibition tests were first performed on solid media.
- A large growth inhibition zone was observed with polyclonal serum for dilutions up to 1:64 (Next Table).
- No inhibition was observed with the two monoclonal antibodies even at the highest concentration tested, i.e., 4 mg/ml.
- Growth inhibition by the polyclonal serum was then evaluated with various titers of *S. citri* cultures (Next Table).
- The inhibition was optimum for low *S. citri* titers and high concentrations of antibodies.
- However, a growth inhibition zone of 2.5 mm was still obtained when a disk with a tenfold dilution of serum was placed on a culture plate containing 10⁸ spiroplasmas per ml.

Growth inhibition(GI) induced by polyclonal antibodies

Antiserum dilution	Inhibition zone (mm)	S. citri titer (CFU/ml)	Inhibition zone (mm) at antiserum dilution	
			0	1:10
1:4 1:8 1:16 1:32 1:64	11 9 8.2 7 5.5 4.5	$ \begin{array}{c} 10^{2} \\ 10^{3} \\ 10^{4} \\ 10^{5} \\ 10^{6} \\ 10^{7} \end{array} $	14 12.5 12 11 10 8	10 8 7 6 5.5 3.5
1:128 1:256	0 0	108	5.5	2.5
1:512 PBS control	0 0	PBS= phosphat	e buffer saline	, pH 7.2

^aS. citri was grown on solid medium, and growth inhibition was determined as a function of antiserum dilution with S. citri at 10⁵ CFU/ml and as a function of S. citri titer with undiluted and 1:10 diluted antiserum.

Growth inhibition test (GI)

- Fifty microliters of a *spiroplasma* culture at 10⁵ CFU/ml were spread onto SP4 medium solidified with 1% agar in 60-mm-diameter petri dishes.
- Twofold dilution series of crude antiserum, monoclonal antibodies (4 mg/ml), or recombinant antibodies (300 µg/ml) in a final SP4 volume of 25 µl were blotted onto sterile 5-mm-diameter paper disks laid on agar in the center of the dishes.
- Negative controls were PBS and the periplasmic fraction of non transformed *E. coli* cells in place of antibodies.
- After 5 to 7 days at 32°C, the growth inhibition areas were measured from the edges of the disks.

Spiroplasm SP4 medium

- PPLO Broth w/o Crystal Violet (BD 255420) 11.0 g
- Tryptone (BD 211705)
- Noble Agar (for solid medium)
- DI Water
- Adjust pH to 7.4 to 7.5.
- Gently boil to dissolve agar, if necessary.
- Autoclave for 15 minutes at 121°C.
- Cool:
- 1. agar medium to 50 to 55°C,
- 2. broth to 55°C or cooler.

10.0 g

525.0 mL

8.0 q

Deformation test (DF)

- The deformation test (DF) is widely accepted for Spiroplasma characterization.
- The DF test screens new isolates against antisera to representatives of existing serogroup strains.
- During the initial screening, the new isolate is generally tested against pools of representative antisera and then examined for deformation.
- Tentative serological relatedness is determined by observation of 50% or greater cells deformed (e.g. clumping, blebs).

Deformation test (DF)

- This initial screening is followed by reciprocal DF tests against antisera to individual strains as indicated by the preliminary screen.
- Reciprocal, terminal titers of 320 or greater indicate strong serological relatedness, and would allow placement of a novel isolate in a pre-existing serogroup.

Deformation test (DF)

- The *S. citri* deformation test was performed in 96-well microtiter plates.
- Two fold dilution series of crude antiserum, monoclonal antibodies (initial concentration, 4 mg/ml), or recombinant antibodies (initial concentration, 300 µg/ml) were done in 25 µl of SP4 medium.
- Then, 25 µl of SP4 medium containing 5×10⁸ CFU of spiroplasmas per ml was added to each dilution.
- As a negative control, the same procedure was carried out with either PBS or periplasmic fraction of nontransformed *E. coli* cells in place of antibodies.
- The microtiter plate was incubated at room temperature for 30 min, and 6-µl samples from each well were observed under a dark-field microscope to determine *spiroplasma* morphology and motility.

Metabolism inhibition test (MIT)

- The *S. citri* metabolism inhibition test was performed in 96well microtiter plates.
- Horizontally, a two fold dilution series of crude antiserum, monoclonal antibody (800 µg/ml), or recombinant antibody (80 µg/ml) suspensions were distributed in a final volume of 50 µl of SP4 medium.
- Vertically, 200 µl of 1:10 dilution series of a 10⁶ CFU/ml spiroplasma culture in SP4 medium was added to each well.
- Negative controls were done with PBS in place of antibodies.
- Glucose fermentation by *S. citri* leads to the production of lactic acid in SP4 medium, resulting in color change of the phenol red pH indicator from red to yellow.
- After incubation for 5 days at 32°C, color changes were recorded for each well.

Spiroplasma Systematics 2. Current requirements for classification of *Spiroplasma* species

- The current minimal standards for spiroplasma species designation rely upon:
- 1. Phenotypic, and
- 2. Genotypic information.
- Numerous biological characteristics must be determined; however, none of the traits tested are genus-specific.
- Microscopic morphology is determined using dark field and electron microscopy.
- Filterability through a 220 nm membrane and resistance to penicillin (500U/ml).
- Other characters are based on cell biochemistry such as glucose fermentation, arginine hydrolysis and urea hydrolysis.

Current requirements for classification of *Spiroplasma* **species**

- The original requirement to determine cholesterol utilization has been questioned, since some spiroplasmas do not have a sterol requirement (e.g. *S. floricola* and *S. gladiatoris*).
- All known spiroplasmas are filterable through a 220 nm membrane, resistant to penicillin, ferment glucose and are unable to hydrolyze urea.
- G+C base composition (mol%) is determined using a melting temperature method, with reported compositions falling within the range of 24-31%.
- Although not required, determination of genome size and 16S rDNA sequence was recommended.
- Genome sizes for spiroplasmas range from 780-2,220 kbp and are determined using pulsed-field gel electrophoresis.

Redgassa and Gasparich,2006

Polyphasic taxonomy Phenotypic, genotypic and phylogenetic information

- Polyphasic taxonomy calls for the inclusion of phenotypic, genotypic and phylogenetic information in classification.
- At the species level, 16S rDNA sequence can distinguish most species unless they are part of closely related strain clusters, such as serologically related subgroups.
- Additional DNA sequences used to enhance molecular phylogenies *Spiroplasma* phylogenetics, including:
- 1. The 16S-23S rDNA intergenic region,
- 2. The gyrB gene, and
- 3. The translated sequence of the metabolic gene *pgk*.

Redgassa and Gasparich,2006

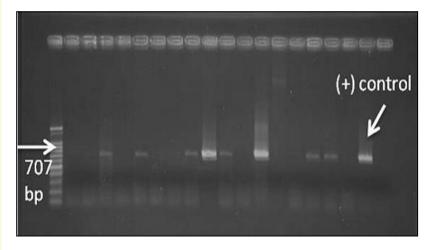
Polyphasic taxonomy Multilocus approach

- There is no single molecule that represents all organismal relationships adequately.
- Different molecules carry different types of information.
- Ultimately, a multilocus approach that is representative of the whole genome may provide the best evidence for evolutionary relationships.
- It has been suggested that 16S rDNA phylogenies could be used in concert with serology to serve as primary characters for taxonomic classification.

Molecular Diagnosis of *Spiroplasma* Resolving power of 16S rRNA sequence analysis, DNA-DNA homology, and serology at various hierarchical levels

Test	Family	Genus	Inter-group	Group*	Subgroup**	Serovar
16S rDNA	+	+	+	+	±	?
DNA-DNA	-	-	-	+	+	±
Serology	-	-	-	+	+	?

*The Spiroplasma group is a putative species.


**The Spiroplasma subgroup may be eligible for species designation.

Molecular Diagnosis of *Spiroplasma* **The sequence of the used primer pair**

Primer	Primer sequence (5' to 3')	Target gene	Reference	
Spiralin-f	GTCGGAACAACATCAGTGGT		(Foissac et al., [9])	
Spiralin-r	TGCTTTTGGTGGTGCTAATG	spiralin gene		
P89-f	ATTGACTCAACAAACGGGATAA			
P89-r	CGGCGTTTGTTTGTTAATTTTTGGTA	putative adhesion gene		
P58-6f	GCGGACAAATTAAGTAATAAAAGAGC	putative adhesion like	(Yokomi <i>et al.</i> , [10])	
P58-4r	GCACAGCATTTGCCAACTACA	multigene		

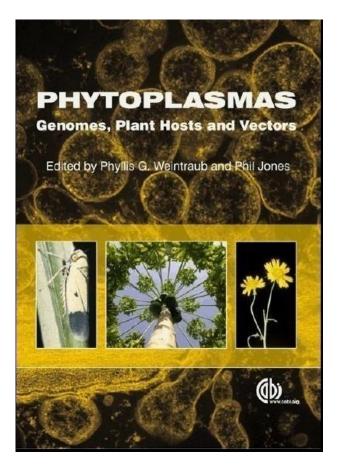
Molecular Diagnosis of *Spiroplasma* Molecular Detection by PCR

- Out of the 130 collected suspected symptomatic samples, 96 reacted positively to the PCR assay using the P89 primer pair, and the amplicons of the expected size were produced.
- Agarose gel analysis showing PCR amplification (707 bp) of *S. citri*-infected Egyptian samples.

Pathogenicity tests Biological Indexing *S. citri* transmission rate

- S. citri transmission rate which was evaluated through the observation of typical symptoms on the leaves of the indicator plants that include (chlorosis, cup shaped leaves with short internodes and small sized).
- using:
- a) traditional method;
- b) inverse inoculation method;
- c) inoculated cutting method.

Pathogenicity tests Biological Indexing *S. citri* transmission rate


- Results obtained by comparing the three methods of biological indexing.
- using:
- a) traditional method;
- inverse inoculation method;
- c) inoculated cutting method.

Method	Time needed for observing the first symptoms	No. of symptomatic plants/No. of tested	% successful transmission
Traditional method	3 months	6/20	30%
Inoculated cutting	5 weeks	5/20	25%
Inverse inoculation	4 weeks	17/20	85%

Identification of the bacterial pathogens Phytoplasma

Disease diagnosis and pathogen diagnostics

Phytoplasmas: Genomes, plant hosts, and vectors

- Phytoplasmas: genomes, plant hosts, and vectors.
- Editors: Weintraub,
 P. G. and P. Jones.
- Publisher: CABI, 2010,
- 331 pages.

Phytoplasmas: Plant Pathogenic Bacteria-I: Characterisation and Epidemiology of Phytoplasma-Associated Diseases

> Govind Pratap Rao · Assunta Bertaccini Nicola Fiore · Lia W. Liefting *Editors*

Phytoplasmas: Plant Pathogenic Bacteria - I

Characterisation and Epidemiology of Phytoplasma - Associated Diseases

D Springer

- Phytoplasmas: Plant Pathogenic Bacteria - I: Characterisation and Epidemiology of Phytoplasma - Associated Diseases.
- Editors: Govind Pratap Rao, Assunta Bertaccini, Nicola Fiore, Lia W. Liefting.
- Publisher: Springer; 1st ed. 2018 edition.
- **358** pages.

Phytoplasmas: Plant Pathogenic Bacteria-II: Transmission and Management of Phytoplasma-Associated Diseases

> Assunta Bertaccini · Phyllis G Weintraub Govind Pratap Rao · Nicola Mori *Editors*

Phytoplasmas: Plant Pathogenic Bacteria - II

Transmission and Management of Phytoplasma - Associated Diseases

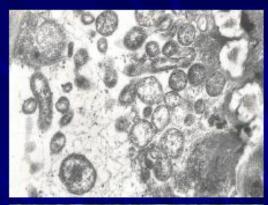
2 Springer

- Phytoplasmas: Plant Pathogenic Bacteria- II: Transmission and Management of Phytoplasma-Associated Diseases.
- Editors: Assunta Bertaccini, Kenro Oshima, Michael Kube and Govind Pratap Rao.
- Publisher: Springer; 1st ed.
 2019 edition.
- 415 pages.

Phytoplasmas: Plant Pathogenic Bacteria -III: Genomics, Host Pathogen Interactions and Diagnosis

> Assunta Bertaccini · Kenro Oshima Michael Kube · Govind Pratap Rao Editors

Phytoplasmas: Plant Pathogenic Bacteria - III


Genomics, Host Pathogen Interactions and Diagnosis

D Springer

- Phytoplasmas: Plant Pathogenic Bacteria - III: Genomics, Host Pathogen Interactions and Diagnosis.
- Editors: Assunta Bertaccini, Kenro Oshima, Michael Kube and Govind Pratap Rao.
- Publisher: Springer; 1st ed. 2019 edition.
- 236 pages.

1. What are Phytoplasmas?

- Phloem-limited insect-transmitted plant pathogenic bacteria that lack a cell wall
- Related to Gram positive bacteria (Bacillus) do not encode typical genes related to pathogenicity present in other plant pathogenic bacteria
- Can not be grown in axenic culture
- Genomes of some have been sequenced (sizes range from 530 – 1200 kb) they are the smallest known self-replicating life form
- Symptoms include yellowing, phyllody, proliferation, stunting, general decline, witches' broom

Bonants,2008

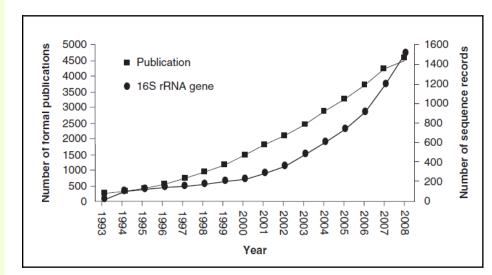
Phytoplasmas History

- Since their discovery in 1967 as 'mycoplasma-like organisms', the phytoplasmas have quickly become established as a unique group of plant pathogens.
- Diseases, frequently called 'yellows', have been known since the late 1800s; originally thought to be associated with viruses, many are now known to be caused by phytoplasmas.
- During the 1970s, research centred on diagnosis using symptoms and electron microscopy to visualize the phytoplasmas in the phloem sieve cells of their hosts.
- In the 1990s the term phytoplasma had been proposed, and by 2004 a distinct taxonomic group, '*Candidatus* Phytoplasma', was defined.

Phytoplasmas

Increased number of phytoplasma publications and sequenced records

- A Google Scholar search (using phytoplasma OR 'mycoplasmalike organism' as a search term) revealed that phytoplasma has been a subject of over 5600 scientific articles, of which 4590 appear in professional media with recorded publication dates.
- More than 2100 of the 4590 articles were published since 2004.

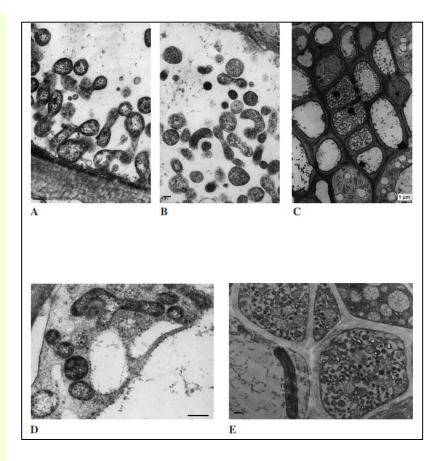

Phytoplasmas

Increased number of phytoplasma publications and sequenced records

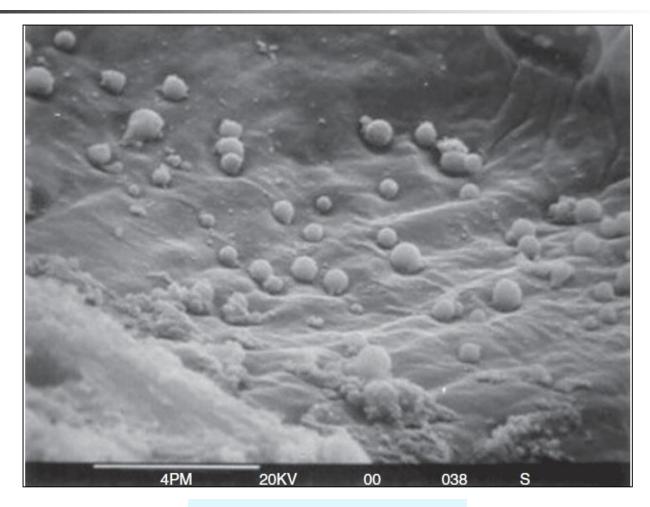
- At the time of writing, 1546 phytoplasma 16S rRNA gene sequences have been registered in and released by the GenBank including sequences submitted through the:
- 1. European Molecular Biology Laboratory (EMBL),
- 2. The DNA DataBank of Japan (DDBJ), and
- 3. The National Center for Biotechnology Information (NCBI), USA).
- This number has more than doubled in less than 3 years.

Phytoplasmas Increased number of phytoplasma publications and sequenced records

 Increase in the number of
 phytoplasma research
 publications and the
 number of
 phytoplasmal 16S
 rRNA gene sequence
 records in the
 GenBank from 1993 to
 2008.

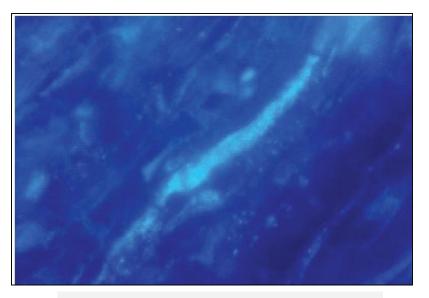


Morphology Cell characteristics


- Mollicutes belong to the Gram-positive bacteria with genomes of low GC.
- Phytoplasmas (Phytos: Greek for plant, Plasma, Greek for thing moulded) have a triple-layered plasma membrane.
- Lack cell wall and cells rigidity, and appear as pleomophic bodies and in transmission electron microscopy (EM) with a mean diameter of 200-800 nm.
- Their shape is normally pleiomorphic or filamentous and normally have a diameter of less than 1 micrometer.
- Like other prokaryotes, DNA is free in the cytoplasm.
- They are believed to reproduce through binary fission.
 Also reproduce asexually by budding.

Electron micrograph of phytoplasma bodies accumulated on sieve tubes of phloem cells

- A-E, Electron micrographs of cross sections of sieve tubes showing variations in the size and shape of phytoplasmas infecting plants.
- Cell size: 0.1-0.8 µm in diameter.
- Bar=200 nm unless specified.


Scanning electron micrograph of a phloem sieve tube of phytoplasma infected plants, showing phytoplasmas attached to the sieve tube plasma membrane

Weintraub and Jones, 2010

Fluorescence microscopy DAPI fluorescence test

- Phytoplasma colonization in petioles of alder viewed by fluorescence microscopy using the DNA dye 4'-6-diamidino-2phenylindole.
- Several sieve tubes show phytoplasmal infections as single particles, while others show them as small aggregates or larger fluorescent areas.

Phytoplasma colonization in petioles of alder yellowsaffected *Alnus glutinosa* (alder).

Antibiotic sensitivity

- Phytoplasmas differ from bacteria in that they lack a cell wall or penicillin-binding sites.
- They are, therefore, resistant to penicillin, to which bacteria are sensitive.
- However, phytoplasmas are sensitive to tetracycline antibiotics.

Non-sterol-requiring mollicutes No sterols in cellular membrane

- '*Ca*. Phytoplasma' membranes are:
- Resistant to digitonin (a glycoside used as a detergent, it effectively water-solubilizes lipids), and
- 2. Sensitive to hypotonic salt solutions, and are therefore similar to those of non-sterol-requiring mollicutes (Lim *et al.*,1992).

Phytoplasmas Genome size

- Diversity was found in:
- 1. genome size, composition,
- 2. metabolic pathways, and
- 3. number of repeats (ORFs).
- They possess DNA and RNA and thought to reproduce by budding.

Genome size

Have very small genomes (680-1,600 kb)

1. Base composition of DNA:

- All phytoplasmas have AT-rich genomes.
- They have a genome with a low G+C content.
- GC content ranges from 21.4% for '*Ca.* Phytoplasma mali' to 27.7% for '*Ca.* Phytoplasma asteris' OY-M.
- According to results from buoyant density centrifugation, the G+C content of `*Ca*. Phytoplasma' DNA is 23-29 mol%.
- They have similar numbers of tRNA genes and two copies of the rRNA operon.

Genome size

Have very small genomes (680-1,600 kb)

2. Chromosome size:

- Differences in the chromosome size between phytoplasma species have been reported.
- It ranges from 530 kbp to 1,350 bp depending on taxonomic group and containing unknown amount of plasmids.
- Short circular extrachromosomal DNAs (1.7-7.4 kb) or plasmids were found in all members of the aster yellows group (16SrI) and stolbur groups (16SrXII) and in some members of X-disease (16SrIII) and clover proliferation (16SrVI) groups.
- Genes encoded in extrachromosomal DNAs such as plasmids are known to play important roles in the pathogenicity and virulence of many plant pathogenic bacteria including phytoplasmas.

Genome evolution

- Phytoplasmas phylogenetically belong to Grampositive bacteria.
- Phytoplasmas suffer extreme genome reductions (reductive, regressive or degenerative evolution) compared with their Gram-positive relatives.
- It has now become clear that phytoplasmas undergo rapid genome evolution, which may be a consequence of their life cycle.
- Phytoplasmas continuously cycle between plants and insects and, in nature, require both organisms for survival and dispersal.

Genome evolution

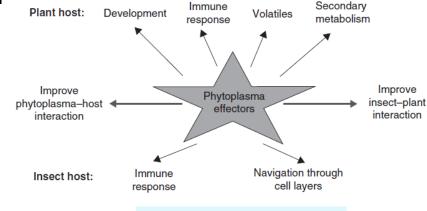
- They probably diverged from Gram-positive bacteria, and belong to the 'Candidatus Phytoplasma' genus.
- The genomes of phytoplasmas are very small when compared with those of their ancestors (walled bacteria in the *Bacillus/Clostridium* group) because they lack several pathways for the synthesis of compounds necessary for their survival.
- These substances must be obtained from host plants and insects (Bai *et al.*,2006).

General features of four sequenced phytoplasma genomes Strains: Onion Yellows M (OY-M), Aster yellows witches'-broom, '*Ca.* **Phytoplasma australiense 'and strain AT of '***Ca.* **Phytoplasma mali'**

Strain	OY-M	AY-WB	tuf-Australia; rp-A	AT
'Ca. Phytoplasma' species	asteris	asteris	australiense	mali
16S rDNA group	IB	IA	XIIB	х
Cluster	I	I	Ι	Ш
Chromosome size (bp)	860,631	706,569	879,324	601,943
Chromosome composition	Circular	Circular	Circular	Linear
G+C content (%)	27.7	26.9	27	21.4
Protein-coding regions (%)	73	72	74	79
Coding sequences	793	708	839	536
Genes encoding proteins	754	671	684	497
Protein-coding genes with assigned	446	450	414	338
functions				
(Conserved) hypothetical proteins ^a	308	221	270	159
Single-copy proteins	486	482	482	408
Multiple-copy proteins	268	191	202	89
Multiple-copy proteins in PMUs	175	134	143	4
Transposase similar to tra5 ^b	7 (6)	6* (20)	5 (1)	1
Fragmented genes	46	102	159	16
Avg ORF size (bp)	833	776	778	955
tRNA genes	32	31	35	32
rRNA operons	2	2	2	2
Extrachromosomal DNAs(plasmids)	2	4	1	0

In general, a phytoplasma genome consists of one chromosome and several small plasmids with a unique replication gene , although 'Ca. P. mali' harbors no plasmids.

(subgroup *tuf-A*ustralia;*rp-A*)

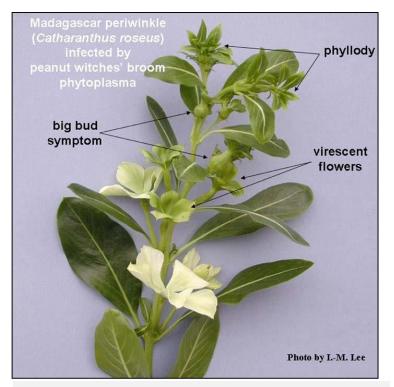

Weintraub and Jones, 2010

Habitat Insect and plant hosts

- Phytoplasmas are obligate parasites occurring in plant phloem tissue and in several insects.
- In insect hosts:
- They may cause premature mortality.
- In plant hosts
- Phytoplasmas are plant-pathogenic prokaryotes. They may cause complex syndromes with specific symptoms, such as virescence, phyllody, sterility of flowers, proliferation of auxiliary or axillary shoots, abnormal elongation of internodes and many other, often less specific symptoms.
- An array of symptoms may be produced due to profound disturbances in the normal balance of plant hormones or growth regulators.

Phytoplasma candidate virulence factors Schematic illustration of the possible functions of phytoplasma effectors

- Effectors perturb the development, immune response, volatile production and secondary metabolism of the plant host and the immune response of insects.
- They can also aid phytoplasma navigation through the various cell layers of insect hosts.
- The overall effect is that phytoplasma fitness is enhanced through manipulation of plant and insect hosts and insect—plant interaction.


Weintraub and Jones, 2010

Symptoms Common symptoms

- Phytoplasmas are unculturable plantpathogenic, wall-less bacteria (mollicutes) that cause diseases in several hundred plant species worldwide (McCoy *et al.*,1989).
- Some of these symptoms includes:
- Yellowing,
- Phyllody (flowers that become leafy),
- Virescence (green coloration of plant parts that are not normally green),
- Witches'-broom (growth of a dense mass of shoots from a single point),
- Stunting,
- Big bud,
- Proliferation, and
- General decline.

Phyllody: production of leaf like structures in place of flowers. Virescence: loss of normal flower color, green flowers.

Virescence Green coloration of plant parts that are not normally green

 Symptoms of strawberry green petal I-C subgroup phytoplasma.

Phytoplasma infected periwinkle exhibiting virescence and phyllody symptoms

Courtesy Ing-Ming Lee

Witches' brooming in lime

Bové and Garnier

Scarlet Plume(*Euphorbia fulgens*) with and without phytoplasma

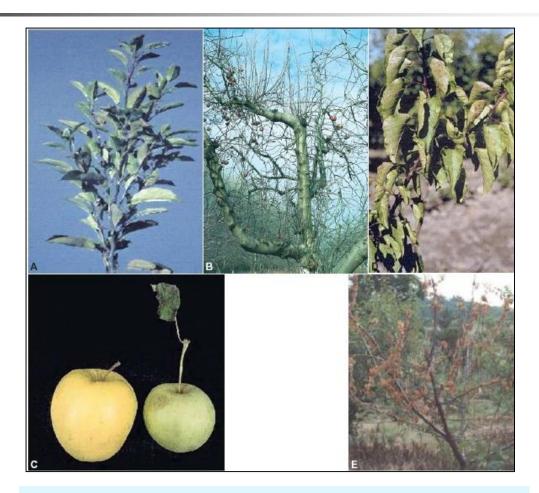
Nicolaisen,2001

Yellows Aster and lethal yellows

Aster yellows phytoplasma

Aster yellows phytoplasma

Distortion, stunting, chlorosis Phyllody and virescence Extremely wide host range


Aster yellows on lettuce [Picture by L. R. Nault]

A. Wayadande

Apple proliferation symptoms on young twig (A), mature apple tree (B), and on reduced fruit size (C, right). (D) European stone fruit yellows symptoms on apricot, followed by death of the tree (E) within a short time

[Photographs courtesy of (A) E. Seemuller, Heidelberg, Germany, and (C–E) L. Giunchedi, University of Bologna, Italy.]

Potato stolbur Symptoms

Symptoms of potato stolbur phytoplasma. Aerial tubers, yellowing and upward rolling of the top leaves in stolbur-infected potato plant.

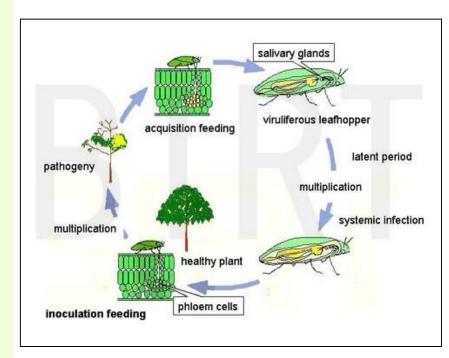
In each picture: healthy (left) and stolbur infected (right) tomato from which seeds were used.

Phytoplasmas life cycle Phytoplasma vectors Persistent and nonpersistent transmission

- Generally, vector acquisition of pathogens increases with time spent feeding on infected plant sources of the pathogen.
- Nonpersistent transmission: Transmission is called nonpersistent if the rate of transmission drops to near zero within a short time(hours).
- Persistent transmission: Describes situations in which the vector can transmit over many days, in some cases, for weeks or months.
- All phytoplasmas are transmitted to plants by phloemfeeding insects in a persistent propagative manner.

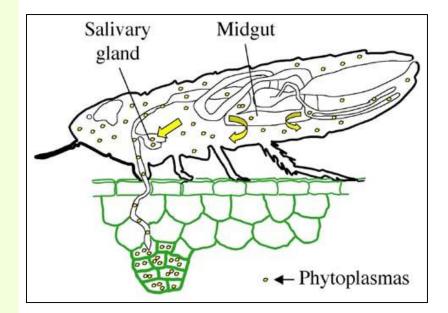
Diseases caused by vector-borne fastidious bacterial pathogens

 Some plant parasites transmitted by insect vectors must multiply and circulate throughout the body of the vector to be transmitted.


Type of pathogen	Vector	Type of transmission	
<i>Xylella fastidiosa</i> (numerous diseases)	Xylem sap-feeders (Leafhopper known as Glassy-winged sharpshooter)	Noncirculative but persistent, propagative in vector	
<i>Ca.</i> Liberibacter Citrus greening	Psyllids	Foregut-borne (non- circulative), persistent	
Aster yellows phytoplasma	Leafhoppers (several spp.)	circulative, propagative	
<i>Spiroplasma citri</i> Citrus stubborn	Leafhoppers (several spp.)	circulative, persistent manner	

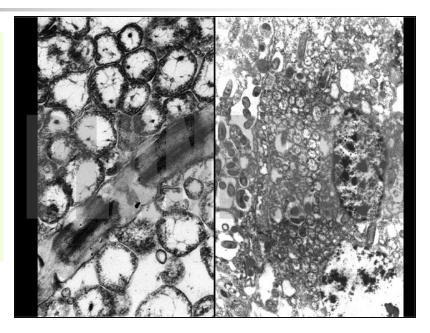
Phytoplasmas life cycle Phytoplasma vectors

- Phytoplasmas are mainly spread by insects in the families:
- 1. Cicadellidae (leafhoppers),
- 2. Fulgoroidea (planthoppers) and
- 3. Psyllidae (jumping plant lice).
- The sapsucking insects feed on the phloem tissues of infected plants, picking up the phytoplasmas and transmitting them to the next plant they feed on.
- For this reason the host range of phytoplasmas is strongly dependent upon its insect vector.


Phytoplasmas life cycle Phytoplasma vectors

- Organisms of the genus Ca. Phytoplasmas inhabit:
- 1. The phloem sieve elements of vascular plants and,
- 2. The gut, haemolymph, salivary gland, and other organs of sapsucking insects.

Phytoplasma vectors Persistent transmission


- Leafhoppers acquire phytoplasmas while feeding.
- Phytoplasmas move from the gut lumen across the gut epithelial cell layer into the hemolymph.
- They replicate frequently at high levels in various insect tissues, including cells of muscle and salivary glands.
- They enter the saliva via the salivary gland cells.
- Phytoplasmas are introduced into plant hosts with insect saliva during feeding.
- The latent period in the insect is at least two weeks.

A schematic illustration of the phytoplasma infection route in a leafhopper

Phytoplasma vectors Persistent transmission

- Phytoplasmas in:
- Plant cell (left), and
- Insect cell (right).

Phytoplasma vectors The citrus witches broom vector Persistent transmission

Hishimonus phycitis The citrus witches broom vector

Diseases caused by *Candidatus* Phytoplasma'

As of today there are hundreds of diseases caused by phytoplasmas and about 100 known insect vectors.

Diseases caused by formal *Candidatus* (*Ca.*) Phytoplasma'

` <i>Ca.</i> Phytoplasma allocasuarinae'	Associated with allocasuarina yellows
` <i>Ca.</i> Phytoplasma americanum'	Associated with potato purple top wilt disease
` <i>Ca.</i> Phytoplasma asteris'	Associated with aster yellows
` <i>Ca.</i> Phytoplasma aurantifolia'	Associated with witches'-broom disease of small-fruited acid lime
' <i>Ca</i> . Phytoplasma australiense'	Associated with Australian grapevine yellows
` <i>Ca.</i> Phytoplasma brasiliense'	Associated with hibiscus witches'-broom in Brazil
<i>`Ca.</i> Phytoplasma <i>caricae'</i>	Associated with papaya bunchy top
<i>`Ca.</i> Phytoplasma castaneae'	Associated with chestnut witches'-broom in Korea
<i>`Ca.</i> Phytoplasma costaricanum'	Associated with an emerging disease in soybean
` <i>Ca.</i> Phytoplasma cynodontis'	Associated with Bermuda grass white leaf
` <i>Ca.</i> Phytoplasma convolvuli'	Associated with bindweed yellows
` <i>Ca</i> . Phytoplasma fraxini'	Associated with ash yellows
` <i>Ca</i> . Phytoplasma fragariae'	Yellow disease of strawberry
` <i>Ca.</i> Phytoplasma japonicum'	Associated with Japanese hydrangea phyllody
<i>`Ca.</i> Phytoplasma lycopersici'	Parsley leaf of tomato

These species share <97.5% similarity among their 16S rRNA gene sequences.

Diseases caused by informal *Candidatus* (*Ca.*) Phytoplasma'

` <i>Candidatus</i> Phytoplasma mali'	Associated with apple proliferation	
` <i>Ca.</i> Phytoplasma omanense'	Witches broom of Cassia	
` <i>Ca.</i> Phytoplasma oryzae'	Associated with rice yellow dwarf	
` <i>Ca.</i> Phytoplasma phoenicium'	Associated with almond lethal disease	
` <i>Ca.</i> Phytoplasma pini'	Yellowing and shoot-proliferation of pine trees(<i>Pinus</i> spp.)	
` <i>Ca.</i> Phytoplasma prunorum'	Associated with European stone fruit yellows	
` <i>Ca.</i> Phytoplasma pyri'	Associated with pear decline	
` <i>Ca.</i> Phytoplasma rhamni'	Associated with buckthorn witches'-broom	
' <i>Ca</i> . Phytoplasma rubi'	Associated with <i>Rubus</i> stunt	
' <i>Ca</i> . Phytoplasma spartii'	Associated with spartium witches'-broom	
' <i>Ca</i> . Phytoplasma sudamericanum'	Associated with Passiflora witches' broom	
<i>`Ca.</i> Phytoplasma tamaricis	Witches -broom -diseased salt cedar	
` <i>Ca.</i> Phytoplasma trifolii'	Associated with clover proliferation	
` <i>Ca.</i> Phytoplasma ulmi'	Associated with elm yellows	
` <i>Ca.</i> Phytoplasma ziziphi'	Associated with jujube witches'-broom	

IRPCM Phytoplasma taxonomy group,2004; Bull *et al.*,2010 & 2012

Candidatus species designation Not yet been formally proposed

- Six species-level taxa for which the *Candidatus* species designation has not yet been formally proposed.
- Phytoplasmas associated with:
- X-disease of peach,
- Grapevine flavescence dore'e,
- Central American coconut lethal yellows,
- Tanzanian lethal decline of coconut,
- Nigerian lethal decline of coconut
- Loofah witches'-broom.

Recommended detection methods

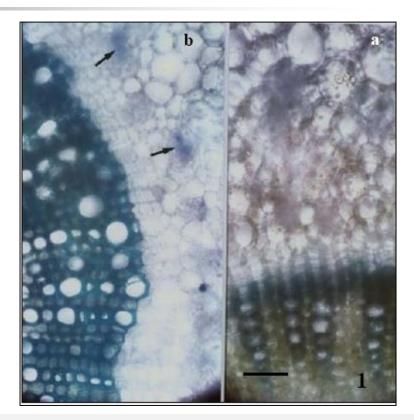
Light & Electron microscopy (Dienes and DAPI staining; immunogold technique), ELISA and PCR (PCR amplification, and RFLP analysis)

Comparison of different phytoplasma detection methods: The cost of equipment is based on a rough estimate.

Mogens Nicolaisen, 2001

	Microscope	electron	ELISA	PCR
	DAPI/ Dienes	microscope		
Specificity	universal	universal	universal method	can be both
			not developed	universal or
				directed towards
				e.g. one group of
				phytoplasmas
Possibility of	can be difficult	can be difficult	possible with a	easy with good
distinguishing			good antiserum	primer
phytoplasma from				combinations
plant material				
Sensitivity	moderate	moderate	moderate	very high
Robustness	high	moderately high	very high	moderately high
Suitable for high	labour intensive	labour intensive	not labour	not labour
throughput			intensive	intensive
Equipment costs	~25.000 EURO	~250.000 EURO	~15.000 EURO	~15.000 EURO
(main equipment in	(flourescence	(electron	(ELISA reader)	(PCR cycler,
brackets)	microscope)	microscope,		electrophoresis)
		ultramicrotome)		
Comments	Demands very	Demands very	Difficult to	Danger of cross
	skilled	skilled	develop new test,	contamination
	technicians.	technicians.	for example for	
			poinsettia.	

Recommended detection methods MLSA markers


- In addition to the 16S rRNA gene marker, multi-locus sequence analysis (MLSA) using other genetic markers has also been widely used for finer differentiation of closely related phytoplasmas.
- These markers include genes encoding:
- 1. ribosomal proteins (*rp*),
- 2. protein translocase subunit SecY, and
- 3. translation elongation factor Tu-EF.

Recommended detection methods MLSA markers

- Unfortunately, selection of suitable markers for MLSA is not straightforward.
- Due to the highly variable evolutionary rates among different bacteria and among different genes (Kuo and Ochman, 2009), the markers that work well for one group do not necessary work well for others.
- Despite these, extensive efforts have been devoted to the development of MLSA markers for phytoplasmas (Martini *et al.*,2019).

Phytoplasma detection methods Light & Electron microscopy Diene's stain

- Hand cut sections of:
- a) Healthy and
- b) Phytoplasma-infected Catharanthus roseus.
- Arrows show the blue spots indicating phytoplasma presence (bars=125 µ).

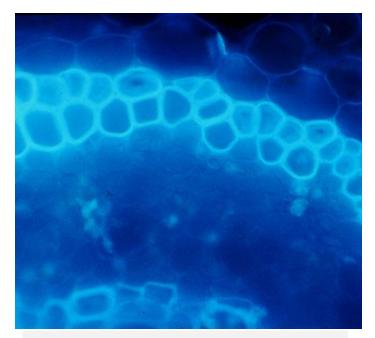
Evidence of phytoplasmas will be the presence of dark-blue granular structures in the phloem.

Musetti et al.,2004

Light microscopy Diene's stain

- Samples are obtained from the main vein, petioles, or stems of infected plants.
- The samples are cut into 2-3 mm pieces and soaked in Karnowsky fixing solution** (or in glutaraledhyde solution 2% in 0.01 M phosphate buffer, pH 7.0).

*Diene's Stain:	
Methylone Blue	2.5 g
Azure II	1.25 g
Maltose	10 g
Sodium Carbonate	0.25 g
Complete to 100 ml	with distilled water

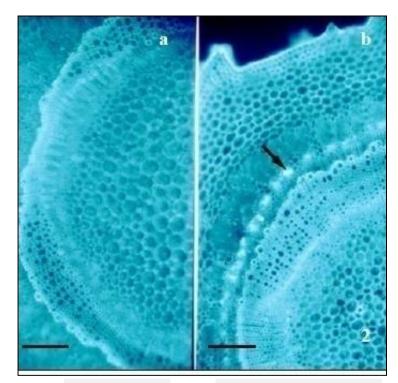

** Karnowsky Fixing Solution: Paraphormaldehyde Solution 8% (12 ml) Cacodylate buffer 0.1 M, containing Ca Cl₂ 2H₂O 0.1% (33 ml) Glutaraldhyde Solution 70% (2 ml

Fluorescence Microscopy DAPI staining

- A rapid and cheap, but not specific technique, which sometimes yields results difficult to interpret.
- Pieces of young tissues (petioles of young leaves, phloem tissue of shoots, branches, and roots) are fixed overnight at 4°C in 4% paraformaldehyde in PBS.
- Longitudinal sections of 20-µm thickness are stained with 1 µg/ml DAPI (4,6 diamidino-2-phenylindole and observed under an epifluorescence microscope.

Fluorescence Microscopy The DAPI technique

- Circular, yellow spots in the phloem are often nuclei, and some cell wall junk often fluoresces and can be mistaken for phytoplasmas.
- It may take a while to be sure of what you are seeing.
- Xylem and fibers fluoresce.

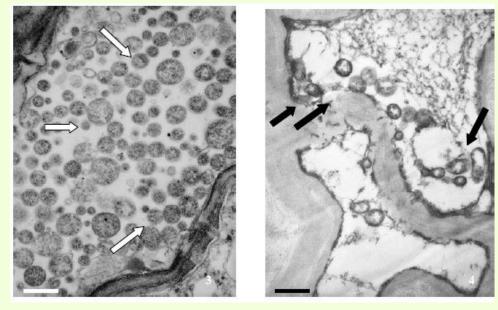


Fluorescent spots in the phloem tissue are highly correlated with the presence of phytoplasmas.

Lee,1998

Fluorescence Microscopy The DAPI technique

- DAPI staining of hand cut sections of:
- a) Healthy and
- b) Phytoplasma-infected stems.
- In b, arrow indicates the fluorescent bright spots, visible at phloem level, diagnostic for the presence of phytoplasmas.
- bars=192 μ

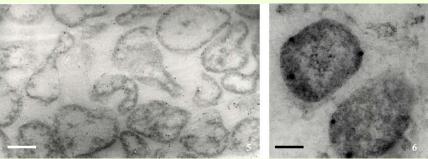

Healthy tissue Phytoplasmainfected tissue

Electron Microscopy Thin section technique

- Small pieces of leaf midribs, young stems and flowers of both healthy and phytoplasma-infected plants, were cut into 2 mm sections.
- Immediately immersed the sections in a fixative containing 5% glutaraldehyde and 4% formaldehyde.
- The samples were **post-fixed** in osmium tetroxide, dehydrated and embedded in a low-viscosity epoxy resin (Spurr, 1969).
- Ultrathin sections were prepared.
- Double stained with uranyl acetate and lead citrate (Reynold, 1963).
- Then examined and photographed with a Hitachi H600 electron microscope.
- The range and size means of phytoplasma bodies were determined by measuring 100 individual cells from ultra thin sections of TEM photo prints.

TEM Thin section technique

Phytoplasmas (arrows) in the phloem cells/tissues.
In fruit and forest trees phytoplasmas are not uniformly distributed in the phloem of the plants.

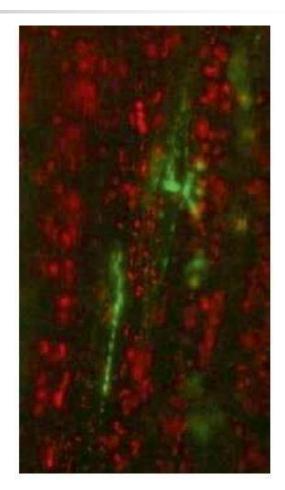

Musetti et al.,2004

Serology Antibodies

- A few specific polyclonal (pAbs) and monoclonal antibodies (mAbs) have been raised against a number of fruit tree phytoplasmas.
- e.g. against the WX (Western X-disease of cherry, peach, and nut trees) phytoplasma rabbit pAbs and mouse mAbs.
- While pAbs and mAbs were produced against apple proliferation (AP).

Serology Immunogold technique

- Phytoplasmas in phloem tissues of *Catharanthus* roseus L. labelled by immunogold technique.
- Primary monoclonal antibody was diluted 25 µg/ml, the secondary gold conjugated antibody 1:20.
- Using gold 15 nm in diameter, few particles are visible on phytoplasma membrane (Fig. 6), using 5 nm gold, particles are well distributed over the periphery of the phytoplasmas (Fig. 5).


Musetti et al.,2004

Serology Immunofluorescence

- One-centimetre-long pieces of stems and roots are fixed in 4% paraformaldehyde in PBS, left overnight at 4°C, and then longitudinally cut by a cryomicrotome (Leitz Jung 1500) to obtain sections of 20-µm thickness.
- The sections are treated with the mab tissue culture supernatants and incubated for 1 h at 37°C.
- After washing, FITC (fluorescein-isothiocyanate)– antimouse conjugate (Sigma no. F1010) is added and incubated at 37°C for 30 min.
- Immunofluorescence is useful and more sensitive than DAPI.

Serology Immunofluorescence

 Localization of apple proliferation (AP) in phloem cells of tissue cultures of *Malus domestica* by immunofluorescence.

Burns,2009

Phytoplasma classification scheme Based on RFLP analyses of PCR-amplified 16S rDNA sequences

- Phytoplasma taxonomic groups are based on:
- PCR amplification of 16S rDNA followed by RFLP analysis of the amplified product (Lee *et al.*,1998a; 2000).
- 2. By comparison of DNA sequences from the 16s/23s spacer regions.

Phytoplasma taxonomy 1. Based on results of RFLP analyses of PCRamplified 16S rDNA sequences

- 14 phytoplasma groups and 32 sub-groups:
- By 1998, the international total of 34 representative phytoplasma strains were differentiated into 14 groups and 32 sub-groups based on similarity coefficients derived from RFLP analyses (Lee *et al.*, 1998; Duduk and Bertaccini, 2011).

Classification of phytoplasma

2. Revised schemes based on RFLP analysis 19 major phytoplasma groups and about 50 subgroups

- 19 major phytoplasma groups and about 50 subgroups:
- The scheme based on actual(gel-based) RFLP analysis of PCR-amplified 16S rDNA sequences has been periodically updated (Lee *et al.*,1998, 2000, 2006a; Montano *et al.*,2001; Arocha *et al.*,2005; Al-Saady *et al.*,2008).
- Thus far, it comprises 19 major phytoplasma groups and about 50 subgroups.

Classification of phytoplasma 3. Revised schemes based on RFLP analysis

33 major phytoplasma groups and about 100 subgroups

- 33 major phytoplasma groups and about 100 subgroups:
- More recent work has extended these counts to 33 groups and at least 100 sub-groups (Dickinson and Hodgetts, 2013; Davis *et al.*, 2015; Zhao and Davis, 2016).

Phytoplasma taxonomy Based on results of actual and virtual RFLP analyses of PCR-amplified 16S rDNA sequences

- Each group includes at least one *Ca.* Phytoplasma species, characterized by:
- 1. distinctive biological,
- 2. phytopathological, and
- 3. genetic properties.

Phytoplasma classification scheme Based on RFLP analysis of 16S rRNA gene Major Phytoplasma group/subgroups

- Group and subgroup are determined on the basis of RFLP patterns of 1.2 kbp segments of 16S rDNA that are delimited by the annealing sites of PCR primers R16F2n and R16R2.
- 'Candidatus Phytoplasma 'species are distinguished on the basis of 16S rDNA nucleotide sequence homology/identity.
- If the 16S rRNA genes of two phytoplasmas share 97.5% or less nucleotide sequence identity, they are considered to represent two separate '*Candidatus* Phytoplasma 'species.

Sr. no.	Common name	Phytoplasma species	Group/subgroup	Reference
1	Nigerian awka disease	[<i>Ca</i> . P. cocosnigeriae]	16SrXXII-A	Firraro, 2004
2	Tanzanian lethal disease	[Ca. P. cocostanzaniae]	Undetermined	Firraro, 2004
3	Loofah witches' broom	[Ca. P. luffae]	16SrVIII-A	Firraro, 2004
4	Palm lethal yellowing	[Ca. P. palmae]	16SrIV-A	Firraro, 2004
5	Western X-disease	[<i>Ca</i> . P. pruni]	16SrIII-A	Firraro, 2004
6	Stolbur phytoplasma	[Ca. P. solani]	16SrXII-A	Firraro, 2004
7	Flavescence doree	[<i>Ca</i> . P. vitis]	16SrV-C	Firraro, 2004
8	Papaya yellow crinkle	Ca. P. aurantifolia	16SrII-D	Davis et al., 1997
9	Allocasuarina yellows	Ca. P. allocasuarinae	Undetermined	Marcone et al., 2004
10	Potato purple top wilt	Ca. P. americanum	16SrXVIII	Lee et al., 2006
11	Lime witches' broom	Ca. P. aurantifolia	16SrII-B	Zriek et al., 1995
12	Grapevine yellows	Ca. P. australience	16SrXII	Davis et al., 1997
13	Balanites witches' broom	Ca. P. balanitae	16SrV	Win et al., 2012
14	Hibiscus witches' broom	Ca. P. brasiliense	16SrXV	Montano et al., 2001
15	Papaya bunchy top	Ca. P. caricae	16SrXVII	Arocha et al., 2005

Wikipedia,2015

Sr. no.	Common name	Phytoplasma species	Group/subgroup	Reference
16	Chestnut witches' broom	Ca. P. castaneae	16SrXIX	Jung et al., 2002
17	Bindweed yellows	" <i>Ca</i> . P. convolvuli"	16SrXII	Martini et al., 2012
18	Soybean stunt	Ca. P. costaricanum	16SXXXI	Lee et al., 2011
19	Sugarcane white leaf	Ca. P. cynodontis	16SrXI	Jung et al., 2003
20	Areca palm yellow leaf	Ca. P. cynodontis	16SrXI-A	Ramaswamy et al., 2012
21	Sugarcane white leaf	<i>Ca</i> . P. cynodontis	16SrXI-C	Lee et al., 1998
22	Leafhopper bourne BVK	Ca. P. cynodontis	16SrXIV	Semuller et al., 2004
23	Bermuda grass white leaf	Ca. P. cynodontis	16SrXIV	Marcone et al., 2004
24	Cynodon white leaf	<i>Ca</i> . P. cynodontis	Undetermined	Blanche et al., 2003
25	Sorghum grassy shoot	Ca. P. cynodontis	Undetermined	Blanche et al., 2003
26	Sorghum grassy shoot	Ca. P. cynodontis	Undetermined	Blanche et al., 2003
27	Strawberry witches' broom yellows	Ca. P. fragariae	16SrXII-E	Valiunas et al., 2006
28	Ash yellows	<i>Ca</i> . P. fraxini	16SrVII-A	Griffiths et al., 1999
29	Sugarcane Yellow Leaf	" <i>Ca</i> . P. graminis"	16SrXVI	Arocha et al., 2005
30	Hydrangea phyllody	Ca. P. japonicum	16SrXII-D	Sawayanagi et al., 1999

Sr. no.	Common name	Phytoplasma species	Group/subgroup	Reference
31	Parsley leaf of tomato	Ca. P. lycopersici"	Undetermined	Arocha et al., 2007
32	Periwinkle phyllody	Ca. P. malasianum	16SrXXXII	Nejat et al., 2012
33	Apple proliferation	<i>Ca</i> . P. mali	16SrX-A	Semuller et al., 2004
34	Cassia italica witches' broom	Ca. P. omanense	16SrXXIX	Saddy et al., 2008
35	Rice yellow dwarf	<i>Ca</i> . P. oryzae	16SrXI-A	Namba et al., 2009
36	Rice yellow dwarf	<i>Ca</i> . P. oryzae	16SrXI-A	Jung et al., 2003
37	Almond lethal disease	Ca. P. phoenicium	16SrIX-D	Verdin et al., 2003
38	Pine shoot proliferation	<i>Ca</i> . P. pini	16SrXXI	Schneider et al., 2005
39	Prunus X-disease	Ca. P. pruni	16SrIII-A	Davis et al., 2012
40	European stone fruit	Ca. P. prunorum	16SrX-F	Semuller et al., 2004
41	Pear decline	<i>Ca</i> . P. pyri	16SrX-C	Semuller et al., 2004
42	Buckthorn witches' broom	<i>Ca</i> . P. rhamni	16SrXX	Marcone et al., 2004
43	Rubus stunt	<i>Ca</i> . P. rubi	16SrV	Maher et al., 2011
44	Bois nor	<i>Ca</i> . P. solani	16SrXII	Quaglino et al., 2013
45	Spartium witches' broom	Ca. P. spartii	16SrX-D	Marcone et al., 2004

Wikipedia,2015

Sr. no.	Common name	Phytoplasma species	Group/subgroup	Reference
46	Passiflora witches' broom	Ca. P. sudamericanum	16SrIII-V	Davis et al., 2012
47	Passiflora witches' broom	Ca. P. sudamericanum	16SrVI	Davis et al., 2012
48	Salt cedar witches' broom	Ca. P. tamaricis	16SrXXX	Zhao et al., 2009
49	Clover proliferation	Ca. P. trifolii	16SrVI-A	Hiruki et al., 2004
50	Elm yellows	<i>Ca</i> . P. ulmi	16SrV-A	Lee et al., 2004
51	Jujube witches' broom	<i>Ca</i> . P. ziziphi	16SrV-B	Jung et al., 2003
52	Aster yellows	Ca. P. asteris	16SrI	Lee et al., 2004
53	MexiCan periwinkle virescence	Not assigned	16SrXIII-A	Wei et al., 2007
54	Bermuda grass white leaf	Not assigned	16SrXIV	Marcone et al., 2004
55	Grapevine yellow	Not assigned	16SrXXIII-A	Wei et al., 2007
56	Sorghum bunchy shoot	Not assigned	16SrXXIV-A	Wei et al., 2007
57	Weeping tea witches' broom	Not assigned	16SrXXV-A	Wei et al., 2007
58	Sugarcane yellows	Not assigned	16SrXXVI-A	Wei et al., 2007
59	Sugarcane yellows	Not assigned	16SrXXVII-A	Wei et al., 2007
60	Derbid phytoplasma	Not assigned	16SrXXVIII-A	Wei et al., 2007
61	Chinaberry yellows	Not assigned	Undetermined	Wei et al., 2007

The first comprehensive phytoplasma classification scheme 14 major phytoplasma groups & 32 subgroups

- Dr. Lee is best known for his pioneering studies on molecular detection, identification, and classification of phytoplasmas.
- Most diagnostic protocols for phytoplasmas include:
- 1. A first PCR amplification driven with universal primers;
- 2. Followed by a nested PCR with group specific primers;
- 3. RFLP analysis of the group-specific amplicon may then be required for final identification of the phytoplasma strain.

The first comprehensive phytoplasma classification scheme Major phytoplasma group/subgroups

- The similarity coefficients of RFLP patterns between two distinct groups were 90% or below.
- An arbitrary threshold of 2.5% dissimilarity was applied as a guideline for electing a new species (IRPCM,2004).
- Based on RFLP analyses of PCR-amplified 16S rDNA sequences using 17 restriction enzymes, the system initially differentiated phytoplasmas into:
- 1. 14 groups, and
- 2. 32 subgroups.

Classification of phytoplasmas based on RFLP (or putative restriction site) analyses of 16S rRNA and ribosomal protein gene sequences comprises:

- 1. 14 major phytoplasma groups, and
- 2. 32 subgroups.

Lee <i>et al</i> .,1998

16Sr group	Strain	Original source	16Sr-rp sub-group	Accession no. (16Sr)	Accession no. (rp)		
16SrI (Aste	6Srl (Aster yellows group)						
I-A	Tomato big bud BB	Tomato: Arkansas	16SrI-A(rp-A)	L33760	L27004		
I-A	New Jersey aster yellows NJAY	Lettuce: New Jersey	16SrI-A(rp-A)				
I-A	Aster yellows AY27	Aster : Canada	16SrI-A(rp-A)				
I-A	Eastern aster yellows NAY	Lettuce: Canada	16SrI-A(rp-A)				
I-A	Periwinkle little leaf CN1	Periwinkle: Connecticut	16SrI-A(rp-A)				
I-A	Oklahoma aster yellows OKAY1	Lettuce: Oklahoma	16SrI-A(rp-A)				
I-B	Michigan aster yellows MIAY	Evening primrose: Michigan	16SrI-B(rp-B)	M30970	M77470		
I-B	Maryland aster yellows AY1	Periwinkle: Maryland	16SrI-B(rp-B)	L33767			
I-B	American aster yellows AAY	Periwinkle: Florida		X68373			
I-B	Dwarf aster yellows DAY	Clover: California					
I-B	Western aster yellows SAY	Celery: California	16SrI-B(rp-B)	M86340			
I-B	Aster yellows OKAY3	Carrot: Okalahoma	16SrI-B(rp-B)				
I-B	Western aster yellows TLAY	Potato: California					
I-B	Hydrangea phyllody HyPH1	Hydrangea : Italy	16SrI-B(rp-K)				
I-B	Chrysanthemum yellows CY	Chrysanthemum: Italy					
I-B	Onion yellows OAY (OA)	Onion: Japan		D12569			
I-B	European aster yellows EAY	Aster : Gemany					
I-B	Aster yellows-Koolsard KD	Cabbage: UK					
I-B	Aster yellows-Cactus CC	Cactus: UK					
I-B	Primula yellows PY	Primula: Germany					
I-B	Gladiolus yellows GLY	Gladiolus: UK					
I-B	Hydrangea virescence	Hydrangea : Belgium					
I-B	Mitsuba witches'-broom JHW	Cryptotaenia: Japan					
I-B	Garland chrysanthemum WB GCW	Chrysanthemum coronarium: Japan					
I-B	Eggplant dwarf ED	Eggplant: Japan					
I-B	Tomato yellows TY	Tomato: Japan					
I-B	Marguerite yellows MY	Chrysanthemum frutescens: Japan					
I-B	Ipomoea witches'-broom IOB	Ipomoea sp.: Taiwan	16SrI-B(rp-F)				
I-B	Maize bushy stunt MBS	Corn: Ohio, Mexico	16SrI-B(rp-L)				
I-B	Mulberry dwarf MD	Mulberry: Japan, China					
I-C	Clover phyllody CPh	Clover: Canada	16SrI-C(rp-C)	L33762			
I-C	Strawberry green petal SGP	Strawberry: Canada	16SrI-C(rp-C)				
I-C	Ranunculus phyllody RPh	Ranunculus : Italy	16SrI-C(rp-C)				
I-D	Paulownia witches'-broom PaWB	Paulownia: Taiwan	16SrI-D(rp-D)				
I-E	Blueberry stunt BBS1 BBS3	Blueberry: Michigan, Arkansas	16SrI-E(rp-E)				
I-F	Apricot chlorotic leaf roll ACLR-AY	Apricot: Spain		X68383			
I	Grey dogwood witches'-broom GD1	Grey dogwood: USA	16SrI(rp-M)				
16SrII (Pea	anut WB group)						
	Peanut witches'-broom PnWB	Peanut: Taiwan		L33765			
II-A	Sweet potato witches'-broom SPWB	Sweet potato: Taiwan		L33770			
II-A	Sunhemp witches'-broom SUNHP	Sunhemp: Thailand		X76433			
II-B	Witches'-broom of lime WBDL	Lime : Arabic Peninsula		U15442			
	Cadidatus Phytoplasma aurantifolia?						
II-C	Faba bean phyllody FBP	Faba bean: Sudan		X83432			
II-D	Sweet potato little leaf SPLL	Sweet potato: Australia					
16SrIII (X-	disease group)						
III-A	X-disease CX	Peach : Canada	16SrIII-A(rp-A)	L33733	L27016		
	X-disease WX	Peach : California	16SrIII-A(rp-B)	L04682	L27047		
	Peach yellow leaf roll PYLR	Peach : California	16SrIII-A(rp-B)				
III-A	X-disease CCX	Choke cherry : New York	16SrIII-A(rp-B)				
III-B	Clover yellow edge CYE	Clover: Canada	16SrIII-B(rp-C)	L33766	L27019		
III-B	Vaccinium witches'-broom VAC	Vaccinium: Germany		X76430			
III-B	Tsuwabuki witches'-broom TW	Farfugium: Japan		D12580			
III-B	Gentian witches'-broom GW	Gentian: Japan					
III-C	Pecan bunch PB	Pecan : Georgia	16SrIII-C(rp-G)				
III-D	Goldenrod yellows GRY (GR1)	Goldenrod: New York	16SrIII-D(rp-E)				
III-E	Spiraea stunt SP1	Spiraea: New York	16SrIII-E(rp-F)				
III-F	Milkweed yellows MWY (MW1)	Milkweed : New york	16SrIII-F(rp-D)				
III-G	Walnut witches'-broom WWB	Walnut: Georgia	16SrIII-G(rp-B)				
III-H	Poinsettia branch-inducing PoiBI	Poinsettia: US					
	conut lethal yellows group)						
IV-A	Coconut lethal yellows LY, LY3	Palm: Florida		U18747			
IV-B	Yucatan coconut lethal decline LDY	Palm: Mexico		U18753			
IV-C	Tanzanian coconut lethal decline LDT	Palm: Africa		X80117			
	n yellows group)						
V-A	Elm yellows EY1	Elm: New York	16SrV-A(rp-A)	L33763	L27022		
V-A	Elm yellows ItaEY	Elm: Italy					
V-A	Elm witches'-broom ULW	Elm: France		X68376			
V-B	Cherry lethal yellows CLY	Cherry: China	16SrV-B(rp-B)				
V-B	Jujube witches'-broom JWB	Jujube: China	16SrV-B(rp-C)				
V-C	Rubus stunt RS	Rubus: Italy					
V-C	Alder yellows AlY	Alder: Germany					
-		,					

Continued...

Classification of phytoplasmas based on RFLP (or putative restriction site) analyses of 16S rRNA and ribosomal protein gene sequences comprises:

- 1. 14 major phytoplasma groups,
- 2. 32 subgroups.

16Sr group	Strain	Original source	16Sr-rp sub-group	Accession no. (16Sr)	Accession no (rp)
V-C	Spartium witches'-broom (EY)	Spartium: Italy			
V-C	Eucalyptus little leaf	Eucalyptus: Italy			
V-C	Flavescence dorée FD	Grapevine: France	16SrV-C(rp-D)	X76560	
16SrVI (0	Clover proliferation group)				
VI-A	Clover proliferation CP	Clover: Canada		L33761	L27011
VI-A	Periwinkle virescence VR, BLTVA	Periwinkle: California			
VI-A	Tomato big bud TBB	Tomato : California			
VI-A	Potato witches'-broom PWB	Potato: Canada			
VI-A	Potato yellows	Potato: North Dakota			
	Ash yellows group)				
VII-A	Ash yellows AshY	Ash: New York		X68339	L26999
VII-A	Lilac witches'-broom LiWB	Lilac: New York			
l6SrVIII	(Loofah witches'-broom group)				
VIII-A	Loofah witches'-broom LfWB	Loofah: Taiwan		L33764	L27027
	Pigeon pea witches'-broom group)				
X-A	Pigeon pea witches'-broom PPWB	Pigeon pea: Florida		U18763	L27036
	pple proliferation group)				
X-A	Apple proliferation AT, AP-A	Apple: Germany, Italy		X68375	L27994
X-B	Apricot chlorotic leaf roll ACLR (Ita)	Apricot: Italy			
X-B	Plum leptonecrosis PLN	Japanese plum: Italy			
X-B	European stone fruit yellows PPER	Peach : Germany		X68374	
X-C	Pear decline PD	Pear: Italy, UK.			
X-D	Spartium witches'-broom SPAR	Spartium: Italy		X92869	
X-E	Black alder witches'-broom BAWB	Black alder (Buckthorn): Germany		X76431	
	(Buckthorn witches'-broom BWB)				
	Rice yellow dwarf group)				
XI-A	Rice yellow dwarf RYD	Rice: Japan, India		D12581	
XI-B	Sugarcane white leaf SCWL	Sugarcane: Thailand		X76432	
XI-B	Sugarcane grassy shoot SCGS	Sugarcane: India			
XI-C	Leafhopper-borne BVK	Psammotettix cephalotes: Germany		X76429	
	Stolbur group)	G Bbi-		2/2/102	
XII-A	Stolbur STOL	Capsicum annum: Serbia		X76427	
XII-A	Grapevine yellows	Grapevine: Germany		X76428	
XII-A	Celery yellows CelY	Celery: Italy		17/0/2	
XII-B	Australian grapevine yellows AUSGY	Grapevine: Australia		L76865	
UT B	' <i>Candidatus</i> Phytoplasma australiense'	Man Zasland dan Man Zasla		1142 670	
XII-B	Phormium yellow leaf PYL	New Zealand flax: New Zealand		U43570	
16SrXIII	(I I I I I I I I I I I I I I I I I I I	Projected as Marries			
XIII-A	Mexican periwinkle virescence MPV	Periwinkle: Mexico			
XIII-B	Strawberry green petal (Florida)	Strawberry: Florida			
16SrXIV	(Bermudagrass white leaf group)				
XIV-A	Bermudagrass white leaf BGWL	Bermudagrass : Thailand			
XIV-A	Annual blue grass white leaf ABGWL	Poa annua: Italy			

The first comprehensive phytoplasma classification scheme 14 major phytoplasma groups & 32 subgroups

- PCR-RFLP analyses can detect phytoplasmas at group/subgroups level:
- 1. The subsequent nested-PCR with phytoplasma groupspecific primers followed by
- 2. RFLP analyses and the 16S ribosomal gene sequencing, allowed classification of the detected phytoplasmas in the different group/subgroups.
- PCR amplification and RFLP analysis of the amplified product, e.g. 16S rRNA gene, allows the rapid identification of phytoplasma isolates.
 - Example:
 - 16SrI-A:
- 16SrI group (Group I/aster yellows group) and I-A subgroup. Tomato big bud is included in 16SrI-A.

PCR analysis 1. Universal primers Designed for (all) phytoplasma detection

- General and specific primers, located in the 16S rDNA, intergenic spacer (IS) and the 23S rDNA region of the phytoplasma genome, are presently used.
- e.g. The universal primer pair P1/P7 can be used to prime the amplification of a 1.8 kb product of 16S ribosomal RNA (rRNA) gene, the spacer region between the 16S and 23S rRNA gene, and the start of the 23S rRNA gene regions of the phytoplasma genome.
- Two more frequently used universal primers are:
- R16F2/R16R2(1200 bp),
- R16mF2/R16mR1(1435 bpb).

PCR analysis Universal primers Designed for (all) phytoplasma detection

Primer pair	Target*	Primer sequence (5'-3') ^b	Expected size of PCR product (bp)	Specificity
Pl/P7	16SrDNA SR	aagagtttgatcctggctcaggatt (11-30)/ cgtccttcatcggctctt (23S rDNA))	1800	All phytoplasmas
R16F1/R16R0	16SrDNA	aagacgaggataacagttgg (129-149)/ ggatacettgttacgaettaaceee (1483-1458)	1354	All phytoplasmas
RI6mF2/ R16mR1	16SrDNA	catgcaagtcgaacgga (53-69)/ cttaaccccaatcatcgac (1487-1469)	1435	All phytoplasmas
RI6F2/ R16R2	16SrDNA	acgactgctgctaagactgg (152-168)/ tgacgggcggtgtgtacaaaccccg (1397-1373)	1248	All phytoplasmas
RI6F2n/ R16R2	16SrDNA	gaaacgactgctaagactgg (149-168)/ tgacgggcggtgtgtgtacaaaccccg (1397-1373)	1248	All phytoplasmas
fU5/rU3	16SrDNA	cggcaatggaggaaact (369-386)/ ttcagctactctttgtaaca (1251-1231)	882	All phytoplasmas
Pl/Tint	16SrDNA, SR	aagagtttgatcctggctcaggatt (11-30)/ tcaggcgtgtgctctaaccagc (SR-t RNA)	1600	All phytoplasmas
SN910601/ SN920204	16SrDNA	gtttgatcctggctcaggatt (1-21)/ cctcagcgtcagtaa (746-732)	746	All phytoplasmas
16R758F/ 16R1232R	16SrDNA	gtctttactgacgctgaggc (738-758)/ cttcagctaccctttgtaac (1251-1232)	513	All phytoplasmas

Schaad et al.,2001

Genomic location of several general and fruit tree specific primers Primers

DNA extraction from infected tissues Cetyl-trimethyl-ammonium bromide (CTAB) procedure

- Nucleic acids can be extracted from fresh or frozen (20°C or 80°C) tissues or tissues freeze-dried or dried over calcium chloride [leaf veins, vascular tissue (phloem) from bark or roots].
- For material that has been freeze-dried or dried over calcium chloride, the quantity needed for DNA extraction should be adapted depending on the weight loss during dry process.
- Grind approximately 1 g of tissue in 10 mL of 3% CTAB buffer (3% CTAB in 100 mM Tris-HCl pH 8.0, 25 mM EDTA, 1.4 M NaCl) at room temperature. Transfer 1 mL of the suspension to an Eppendorf tube, add 2 µL of 2-mercaptoethanol (for a final concentration of 0.2%). Vortex briefly and incubate for 20 min at 65°C.
- Then, add an equal volume of chloroform:isoamyl alcohol (24:1). Vortex and centrifuge at 10 000 g for 10 min. Recover the aqueous phase and precipitate the nucleic acids with an equal volume of cold isopropanol.
- Shake by inversion and centrifuge at 10 000 g for 15 min to recover the precipitate. Wash the pellet with 70% ethanol, air dry and dissolve in 100 µL o f TE buffer (10 mM Tris, 1 mM EDTA, pH 8) or nuclease-free water.

DNA extraction from infected tissues Stolbur phytoplasmas in *Prunus avium*(cherry) Cetyl-trimethyl-ammonium bromide (CTAB) procedure

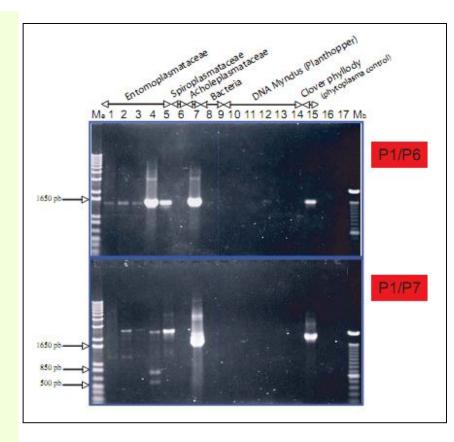
- Samples from symptomatic (Wilting, dying, and phloem necrosis) and asymptomatic cherry were collected.
- Total DNA was extracted from leaf midribs, secondary roots and scrape of phloem from small branches or trunk (cherry) and from roots and leaves (bindweed) using a CTAB method (Doyle and Doyle, 1990) and the Plant DNeasy mini kit (Qiagen GmbH, Hilden).
- Preliminary identification was carried out performing PCR assays with universal phytoplasma rDNA primers P1/P7 (Deng and Hiruki, 1991; Schneider *et al.*, 1995), followed by nested PCR using the universal primers U3/U5 (Lorenz *et al.*, 1995).
- Reference controls included DNA extracts from asymptomatic cherry, naturally infected tomato samples showing typical stolbur symptoms, naturally infected apple showing apple proliferation symptoms, and PEY (Pichis echioides yellows, subgroup 16SrIX-C) and CX (X disease from peach, subgroup 16SrIII-A) infected Catharanthus *roseus*.
- Tubes without DNA were used as negative controls.

PCR/nested PCR analyses Universal Primers Method

- 1. Phloem tissue from stems and leaf midribs of infected plants were subjected to DNA extraction.
- 20 ng of each DNA preparation was added to the PCR reaction mix in a final reaction volume of 25 μl.
- 2. Amplify the DNA by 35 cycles in a Perkin Elmer 480 thermal cycler.
- Dilute these PCR products with sterile distilled water (1:39) prior to amplification by nested PCR using general (R16F2/R2) and group-specific primer pairs(R16(I)F1/R1).
- 4. Observe PCR products in 1% agarose gel and photograph with the Gel Doc.

PCR-RFLP analyses Detection at subgroups level Method of RFLP analyses of the PCR product

- Three to 10 µl (about 200 ng of DNA) of each positive nested PCR product observed after 1% agarose gel electrophoresis were separately digested RFLP analyses.
- 6. Digestion were undertaken with 2.5 U of each 17 restriction enzymes:
- AluI, BamHI, BfaI, BstUI (ThaI), DraI, EcoRI, HaeIII, HhaI, HinfI, HpaI, HpaII, KpnI, Sau3AI (MboI), MseI, RsaI, SspI and TaqI (Lee et al., 1998; Wei et al., 2008b).
- 7. Digestion reactions were left at the required temperature for at least 16 h.
- 8. The restriction patterns were compared after electrophoresis on a 5% polyacrylamide gel followed by ethidium bromide staining, and photographed under UV at 312 nm using a transilluminator.
- 9. The same procedure was performed with reference phytoplasma strains belonging to other subgroups such as 16SrI-B, 16SrI-C, etc.


PCR/nested PCR analyses Phytoplasma universal primers P1/P6

- Not only phytoplasma DNA could be amplified with these primers.
- DNA from Entomoplasmatales and Acholeplasma palmae, from insects or plant surfaces were amplified and gave products with a size similar to the product obtained with phytoplasma DNA (~1496 pb).
- Leifsonia xyli, gram-positive bacteria (Actinomycetales) also gave a PCR product with a very similar size.

PCR/nested PCR analyses Phytoplasma universal primers P1/P7 and P1/P6

- Amplifications were also obtained with primers P1/P7, even though the amplicons were not always of the expected size.
- When using primers P1/P7 and P1/P6 not only phytoplasma DNA could be amplified but also some mollicutes or bacterium DNAs.

Phytoplasma detection methods Based on direct and nested-PCR assays Primers P1/P7 and R16mF2/R16mR1

- The direct-PCR products thus obtained were subsequently used in nested-PCR.
- The nested-PCR was sensitive enough to reamplify the direct-PCR product (1.8 kb), resulting in a DNA fragment of 1.2 kb.
- Below is an example of oligonucleotide primer sequences used for PCR(direct and nested-PCR assays) amplification as well as schematic diagram of a phytoplasma rRNA operon showing the 16S and 23S genes and intergenic spacer region.

Duiman	Teretien			16S	spacer region	235
Primer	Location	Oligonucleotide sequence	5'		and the second se	SCHEROLAND ST
P1	16S	5' AAGAGTTTGATCCTGGCTCAGGATT 3'	→ P1		← ₽7	
P 7	238	5' CGTCCTTCATCGGCTCTT 3'				1.8 kb
R16mF2	16S	5' CATGCAAGTCGAACGA 3'			-	
R16mR1	16S	5' CTTAACCCCAATCATCGAC 3'	1	R16mF2	R16mR1 1.2 kb	

Khan *et al*.,2004

PCR-RFLP analyses 2-Group-specific primers Designed for sub-groups detection

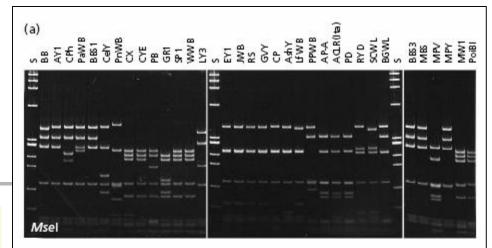
RI6(I)F1/ R16(I)R1	16SrDNA	taaaagacctagcaatagg (278-297)/ caatccgaactgagactgt (1297-1279)	1020	Group 16SrI (AY)
SN920203/ SN910502	16SrDNA	tttaagcaattaaacttta (63-81)/ aaccccgagaacgtattcacc (1368-1348)	1306	16 SrI
P1/AYint	16SrDNA, SR	aagagtttgatcctggctcaggatt (11-30)/ tacaatttgcaagcaagttac (SR)	1500	16SrI
R16(III)F2/ R16(III)R1	16SrDNA	aagagtggaaaaactccc (457-474)/ tccgaactgagattga (1355-1340)	899	16SrIII
Pl/WXint	16SrDNA, SR	aagagtttgatcctggctcaggatt (11-30)/ gacagtgcttataactttta (SR)	1600	16SrIII
RI6(V)F1/ R16(V)R1	16SrDNA	ttaaaagaccttcttcgg (204-221)/ ttcaatccgtactgagactacc (1359-1338)	1156	16SrV
fB1/rULWS1	16SrDNA, SR	gaccetteaaaaggtettag (73-91)/ egtettttatataagagaaaca (SR)	1500	16SrV
Pl/BLTVAint	16SrDNA, SR	aagagtttgatcctggctcaggatt (11-30)/ gatgattttagtatatatgtcc (SR)	1450	16SrVI
fBl/rASHYS	16SrDNA, SR	gacccttcaaaaggtcttag (73-91)/ gcaggaccgtttatattaatc (SR)	1500	16SrVII
R16(X)F1/ R16(X)R1	16SrDNA	gacccgcaagtatgctgagagatg (210-233)/ caatccgaactgagactgt (1358-1339)	1149	16SrX

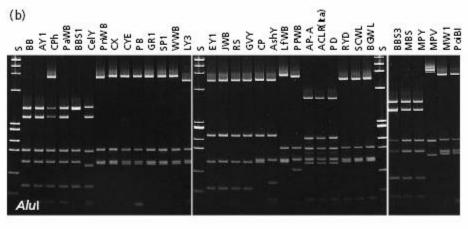
Schaad et al.,2001

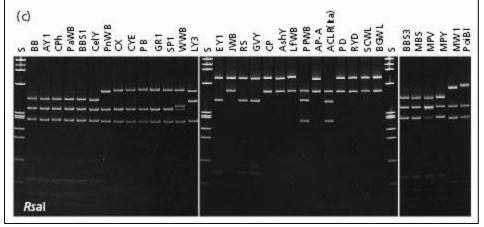
PCR-RFLP analyses Group-specific primers Designed for sub-groups detection

Primer pair	Target ^a	Primer sequence (5'-3') ^b	Expected size PCR product (bp)	
fAT/rAS	16SrDNA SR	ccatcatttagttgggcactt (1113-1131)/ ggccccggaccattatttatt (SR)	500	16SrX
P1/PYLRint	16SrDNA, SR	aagagtttgatcctggctcaggatt (11-30)/ cccggccattattaattttatc (SR)	1550	16SrX-B, C
fPD/rPDS	16SrDNA, SR	gacccgtaaggtatgctga (205-324)/ cccggcaattattaatttta (SR)	1400	16SrX-C
SN910601/ SN920202	16SrDNA	gtttgatcctggctcaggatt (1-21)/ atgcaccacctgtatcc (1031-1015)	1031	16SrXI
rpF1/rpR1	rp genes	ggacataagttaggtgaattt (rps19)/ acgatatttagttctttttgg (rpl16)	1232 1350	16SrI, V, VII, VIII, X 16SrIII
rpF2/rpR2	rp gene	tctcgtacttttcgtgg (rps19)/ acctttagctcttggaa (rpl22)	1200	16SrVI,X
rp3/rp4	rp gene	aacttctagcacaaacttgc(rpl22)/ gtctgttaggagtgttagaa(rps3)	750	16SrI-D(rp-D)
IIIrpFl/ IIIrpR1	rp gene	agaaaggcattaaacatatgaat/ cgctgttcataattttagcct	1300	16SrIII
VrpF1/rpR1	rp gene	tcgcggtcatgcaaaaggcg/ acgatatttagttctttttgg	1200	16 \$ rV
CN1-10F1/ CN1-10R1	Cloned non-rDNA	gggttaaggctagaaatggatottg/ talcagalatoattggogaaggaot	960	168r1

Schaad et al.,2001

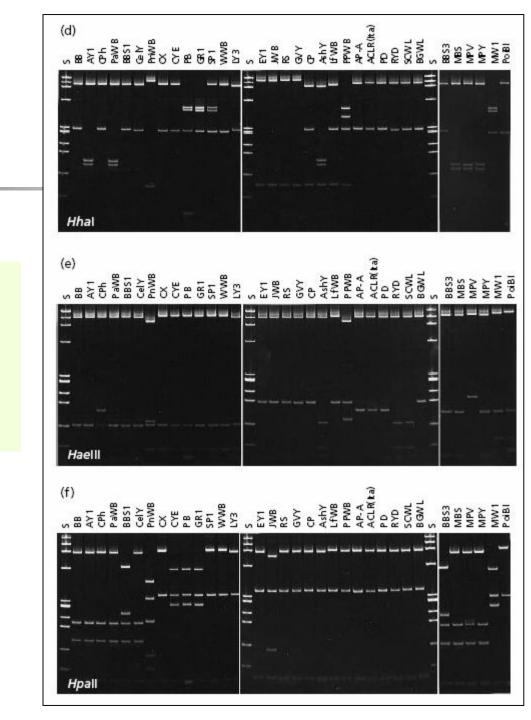

PCR-RFLP analyses Group-specific primers Designed for sub-groups detection


BB88F1/ BB88R1	Cloned non-rDNA	caccatcacacgcgtgatgaccgcctttcc/ gccttacaactacaccatcagtttgaggag	740	16SrI
CK6/CK8	Plasmid DNA	cctctttaggcccaatagcag/ ctcatgttttcagcttgggttc	235	16SrI
AY18p/AY18m	Cloned non-rDNA	aacccaaactatcaaaag/ tgtttctacttcttcttg	1600	16SrI-A, B, C
AY19p/AY19m	Cloned non-rDNA	taacatcagaataaatgg/ gacttacgttggtgaagg	1100	16SrI-A, B
G35p/G35m	Cloned non-rDNA	taacactgtggaagctca/ cgtcaatggctaatcgat	1200	Some 16SrI subgroups
MBS-F1/MBS-R1	Cloned non-rDNA	aatgtcgaactaacaggcgg/ ttggcgatttggttttgg	740	16SrI(rp-L) (Maize bushy stunt)
EY11-F1/ Ey11-R1	Cloned non-rDNA	gactcteggatgagagtcttgggtg/ cttgggattatggccctgttataccag	1100	16SrV-A
1A/1B	Cloned non-rDNA	tcttttacctaaattttgaggtaattc/ ttgtgttatcgcaagggctttagg	196	16SrVI-A
LY-F1/LY-R1	Cloned non-rDNA	catattttatttcctttgcaatctg/ tcgttttgataatctttcatttgac	1000	16SrVII-A (Coconut lethal yellows)
fStol/rStol	Cloned non-rDNA	gccatcattaagttgggga/ agatgtgacctattttggtgg	500	16SrXII

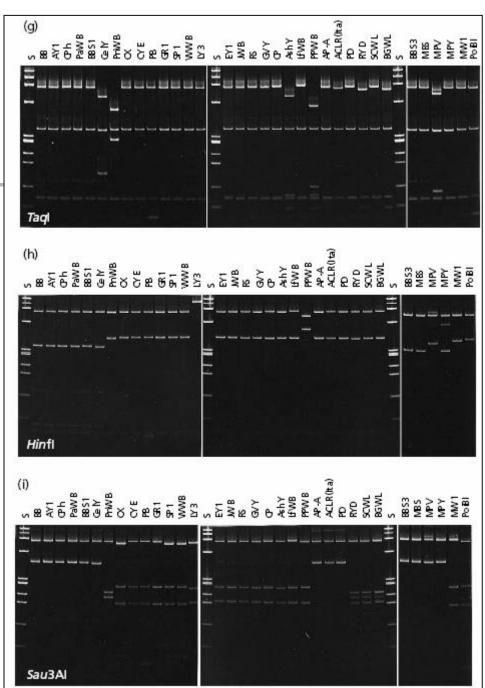

Schaad et al.,2001

RFLP analyses of 34 phytoplasma 16S rDNAs

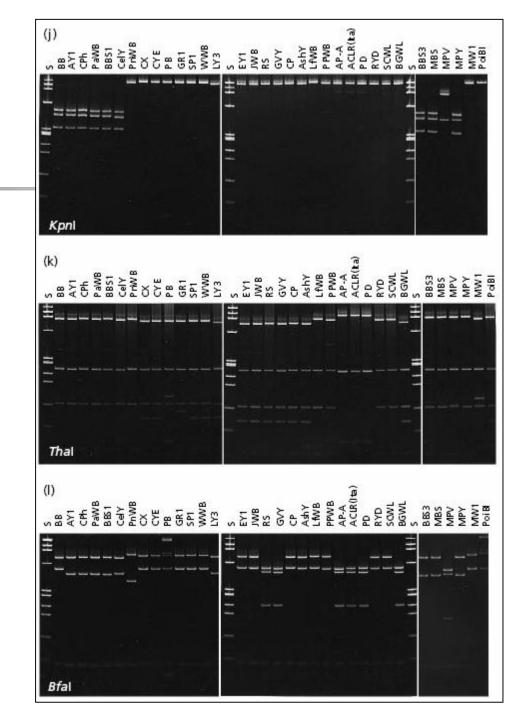
- The presence of upper two bands seen in lanes PB and PoiBI in (I) were due to incomplete digestion.
- Lane S, uX174 RFI DNA *Hae*III digest, fragment sizes (bp) from top to bottom: 1353, 1078, 872, 603, 310, 281, 271, 234, 194, 118, 72.
- Other abbreviations are mentioned earlier.



Lee *et al.*,2001


RFLP analyses of 34 phytoplasma 16S rDNAs

Lee *et al*.,2001


RFLP analyses of 34 phytoplasma 16S rDNAs

RFLP analyses of 34 phytoplasma 16S rDNAs

Lee *et al*.,2001

Phytoplasma taxonomy

Classification based on RFLP analyses of alternate genes Genes other than 16S rRNA

- Because of its highly conserved nature, the 16S rRNA gene is inadequate for finer differentiation of closely related but distinct phytoplasmas strains.
- To overcome this limit, several universal and group-specific primers were developed on the basis of:
- 16S-23S rRNA intergenic spacer region (ISR);
- Tuf gene (encoding the elongation factor, EF-Tu, is another highly conserved gene with a central role in translation);
- Ribosomal protein (rp) genes;
- Immunodominant membrane protein (*imp*) gene;
- SecA gene and stress associated protein 11(SAP11)gene. These new molecular markers were used in identification and classification of phytoplasmas.

Phytoplasma taxonomy List of molecular markers for phytoplasma classification

Marker	Primers (5'-3')	Amplicon size (bp)	Variable sites	Informative sites	References
16S rRNA	[R16F2n] GAAACGACTGCTAAGACTGG	1,246	15	6	Gundersen and
	[R16R2] TGACGGGCGGTGTGTACAAACCCCG				Lee, 1996
Ribosomal proteins	[rpF1] GGACATAAGTTAGGTGAATTT	1,240	70	25	Lim and Sears,
(<i>rpl22</i> and <i>rps3</i>)	[rpR1] ACGATATTTAGTTCTTTTTGG				1992
Ribosomal proteins	[rpF1C] ATGGTDGGDCAYAARTTAGG	1,236	70	25	Martini et al.,
(<i>rpl22</i> and <i>rps3</i>)	[rp(I)R1A] GTTCTTTTTGGCATTAACAT				2007
Preprotein	[AYsecYF1] CAGCCATTTTAGCAGTTGGTGG	1,358	105	62	Lee et al., 2006
translocase SecY (secY)	[AYsecYR1] CAGAAGCTTGAGTGCCTTTACC				
Chaperonin 60	[H279p] GATIIIGCAGGIGATGGAACMACIAC	605	21	12	Dumonceaux
(groEL/cpn60)	[H280p] TGRTTITCICCAAAACCAGGIGCATT				et al., 2014
Chaperonin 60	[AYgroelF] GGCAAAGAAGCAAGAAAAG	1,396	59	34	Mitrović et al.,
(groEL/cpn60)	[AYgroeIR] TTTAAGGGTTGTAAAAGTTG				2011
Elongation factor Tu	[fTufu] CCTGAAGAAAGAGAACGTGG	842	39	23	Schneider and
(tuf)	[rTufu] CGGAAATAGAATTGAGGACG				Gibb, 1997
Replication initiation	[F] CACAAGAAAAATTAGAAGCTC	767	77	60	This study
protein DnaD					
(dnaD)		785	57	36	This stucks
DegV family protein (degV)	[F] GTAGTTGATTCTACTTGCGG	785	57	30	This study
		700	17	20	This share
TIGR00282 family metallophospho-	[F] AGATATTTACGGAAACCCAG	708	47	30	This study
esterase	(R) AGGTTTAAGAGTGACAAGTAAA				
Preprotein	[F] AATTGTTGTTTCGATGAGCC	711	64	36	This study
translocase SecY	[]]// a failed the a data a		0.1	00	inic clady
(secY)	[R] TTGGCAGTAGCTTTGATGCG				
RluA family	[F] AAAGAGTTTCTTATTTCTGCCAG	778	80	54	This study
pseudouridine synthase (<i>rluA</i>)	[R] GACCTAAAGGAGTAATATGGTG				

Cho *et al*.,2020

Phytoplasma taxonomy

Classification based on RFLP analyses of alternate genes Genes other than 16S rRNA

- Examples:
- 1. 16S-23S rRNA intergenic spacer region (ISR):
- ISR (about 232 bp) can serve as a useful tool for differentiation of phytoplasma groups and subgroups.
- Taxonomic groupings based on the analysis on the 16S/23S spacer regions which shows greater variation than the normally used 16srRNA gene results in classification similar to that derived from 16S rRNA data but with more detailed subdivisions.

Phytoplasma taxonomy

Classification based on RFLP analyses of alternate genes Genes other than 16S rRNA

- Diagrammatic representation of the 16S-23S rRNA operon, showing the position of some of the various universal primers that have been developed for PCR amplification of this region from phytoplasmas.
- Primer names are given under the arrows and the sizes of the expected amplicons are shown between the dotted lines. Not drawn to scale.

16S rRNA			tRNA	23S rRNA
-			······	
P1		1830 bp	P7	
R16F2n	1245 bp	R16R2		
fU5	890 bp	rU3		
		_ ▶	1040 bp	23Srev
				200164
		P3	320 bp P7	
		_ → P3	820 bp	- 23Srev

Weintraub and Jones, 2010

Ribosomal gene sequencing 16Sr DNA and 16S-23S rDNA spacer regions

- The 16Sr DNA and 16S-23S rDNA spacer regions of all tested phytoplsma were sequenced.
- Sequencing can be done directly (PCR products) or after cloning.
- Sequencing of samples were obtained aligning PCR products generated by amplification with primers:
- P1/U3 (position 6-1230),
- R16F2/R2 (position 152-1397), and
- 16R758/P7 (position 758-1818).
- PCR products were sequenced in both directions using the BIG DYE sequencing terminator kit (PE Biosystems, Warrington, UK).
- Both sequences were aligned with those of phytoplasmas available in GenBank using the World Wide Web service CLUSTAL W (<u>http://www2.ebi.ac.uk/clustalw/</u>) or BLAST (http://www.ncbi.nlm.nih.gov).

Ribosomal gene sequencing Alignment of the 16S-23S rRNA intergenic spacer region

sequences AY phytoplasma from different hosts

- Alignment of the 16S-23S rRNA intergenic spacer region sequences AY phytoplasma from different hosts:
- (X) Queen Anne's lace,
- (Y) poker statice, and
- (Z) AY phytoplasma from parsley.
- 1. Between Queen Anne's lace and parsley, nucleotides 97, 99, 101, 105 and 130 and 231 differ.
- 2. Between Queen Anne's lace and poker statice, nucleotides 97, 101, 105, 119, 130 and 231 differ.
- 3. Between poker statice and parsley, nucleotides 99 and 119 differ.
- Despite these differences, all were highly homologous with each other and therefore could be classified in the same phylogenetic group.

X	CAAGGTATCCCTACCGGAAGGTGGGGATGGATCACCTCCTTTC	43
Y	CAAGGTATCCCTACCGGAAGGTGGGGATGGATCACCTCCTTTC	43
Z	CAAGGTATCCCTACCGGAAGGTGGGGATGGATCACCTCCTTTC	43
X	TAAGGAAACAATTATCATCTTCAGTTTTGAGAGACTTAAGAAAGTTTTTC	93
Y	TAAGGAAACAATTATCATCTTCAGTTTTGAGAGACTTAAGAAAGTTTTTC	93
Z	TAAGGAAACAATTATCATCTTCAGTTTTGAGAGACTTAAGAAAGTTTTTC	93
X	ATT T <u>A</u> A TTG TTGCAAATTGTAT <u>T</u> TGCAACATTT AATCTTTTTAAGA	143
Y	ATT <u>G</u> T <u>AAC</u> TTG <u>C</u> TTGCAAATTGTAT TGCAACATTT <u>T</u> AATCTTTTTAAGA	143
Z	ATT <u>G</u> T A <u>C</u> TTG <u>C</u> TTGCAAATTGTAT <u>T</u> TGCAACATTT <u>T</u> AATCTTTTTAAGA	143
X	TTAAGGGCCTATAGCTCAGTTGGTTAGAGCACACGCCTGATAAGCGTGAG	193
Y	TTAAGGGCCTATAGCTCAGTTGGTTAGAGCACACGCCTGATAAGCGTGAG	193
Z	TTAAGGGCCTATAGCTCAGTTGGTTAGAGCACACGCCTGATAAGCGTGAG	193
X	GTCGGTGGTTCAAGTCCATTTAGGCCCACCATAACCA AAATAGGCAAAA	243
Y	GTCGGTGGTTCAAGTCCATTTAGGCCCACCATAACCA <mark>C</mark> AAATAGGCAAAA	243
Z	GTCGGTGGTTCAAGTCCATTTAGGCCCACCATAACCA <mark>C</mark> AAATAGGCAAAA	243
X	TCTTAAAAAAGCTCTTTGAAAAGTAGATAAACGAAGGTTAAAAAATCAAA	293
Y	TCTTAAAAAAGCTCTTTGAAAAGTAGATAAACGAAGGTTAAAAAATCAAA	293
Z	TCTTAAAAAAGCTCTTTGAAAAGTAGATAAACGAAGGTTAAAAAATCAAA	293
X	GGAACTAAGGGCGCACAGTGGATGCCTTGGCACT	327
Y	GGAACTAAGGGCGCACAGTGGATGCCTTGGCACT	327
Z	GGAACTAAGGGCGCACAGTGGATGCCTTGGCACT	327

Phytoplasma taxonomy

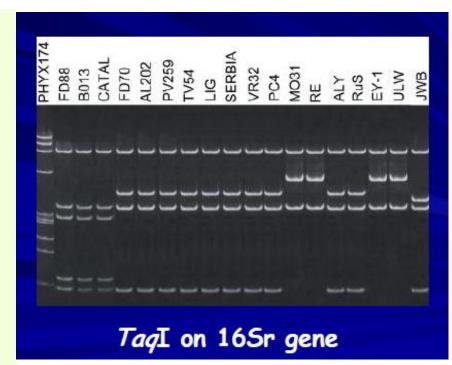
Classification based on RFLP analyses of alternate genes Genes other than 16S rRNA

Examples:

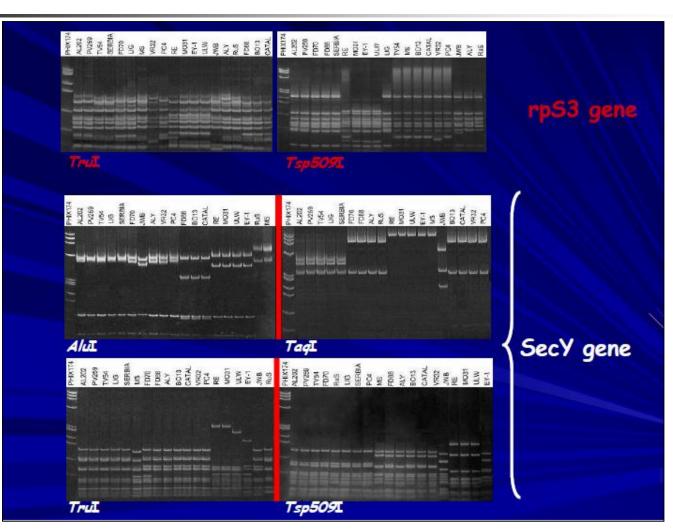
- 2. *secA* (Encode SecA protein, an essential components of the Sec system for protein secretion):
- It was recently employed for classification of phytoplasmas (Hodgetts *et al.*,2008).
- A portion of the gene sequence, about 480 bp, was PCR-amplified from various phytoplasma strains representing 12 16Sr groups.

Phytoplasma taxonomy

Classification based on RFLP analyses of alternate genes Genes other than 16S rRNA


3. Ribosomal protein (rp) genes:

- Ribosomal protein (rp) genes are more variable than 16S rRNA genes and have more phylogenetically informative characters, which substantially enhance the resolving power in delineating distinct phytoplasma strains.
- Recently, Martini *et al.*,2007 constructed a comprehensive phylogenetic tree based on the analysis of two ribosomal protein genes:
- *1. rplV*(*rpl22*), and
- *2. rpsC (rps3*), from 46 phytoplasma strains representing 12 16Sr groups.
- This rp gene-based phylogenetic tree delineated more distinct phytoplasma subclades and distinct lineages than those resolved by the 16S rRNA gene-based tree.


Polymorphisms as shown by RFLP analyses with selected restriction enzymes on three genes of 16Sr gene, rpS3 gene and SecY gene

16Sr gene:

 Polymorphisms as shown by RFLP analyses with selected restriction enzymes on three genes of different strains of phytoplasmas related to Flavescence dorée.

Polymorphisms as shown by RFLP analyses with selected restriction enzymes on three genes of 16Sr gene, rpS3 gene and SecY gene

Phytoplasma taxonomy Actual or Virtual RFLP analyses?

- In contrast to conventional or actual RFLP analysis, which has typically been done in the absence of prior nucleotide sequence information, virtual RFLP analysis is a nucleotide-sequence-based operation.
- Due to this and some following reasons, actual RFLP analysis will remains useful for phytoplasma differentiation and classification:
- Already established phytoplasma 16S rDNA RFLP patterns have served as standard keys for phytoplasma strain identification and classification.

Phytoplasma taxonomy Actual or Virtual RFLP analyses?

- Since virtual RFLP analysis is a nucleotide-sequencebased analysis, any error in an input sequence which misrepresents the phytoplasma strain under study could result in erroneous group/subgroup classification.
- New pattern types(new phytoplasmas) derived from virtual RFLP analysis should be confirmed by actual enzymatic digestions followed by gel electrophoresis.

Phytoplasma taxonomy Classification of phytoplasma based on Virtual RFLP analysis of 16S rDNA (Computer-simulated RFLP analysis or *in silico* RFLP analysis of 16S rRNA gene sequences)

- Sequencing of the 16S rRNA gene is required for performing virtual RFLP analysis.
- The scheme, accompanied by illustrated RFLP patterns of all representative strains in print or online, has essentially provided the most comprehensive list of reference phytoplasma strains.
- By comparison with these patterns, one can identify an unknown phytoplasma strain either:
- Through actual (for preliminary identification) or computer-simulated virtual RFLP analysis of the 16S rRNA gene sequence.

In silico is an expression used to mean "performed on computer or via computer simulation". The term was used to characterize biological experiments carried out entirely in a the computer. **Phytoplasma taxonomy** Classification based on Virtual RFLP analysis of 16S rDNA Computer-simulated RFLP analysis or *in silico* RFLP analysis of 16S rRNA gene sequences

- Computer-simulated RFLP analysis uses a vast collections of phytoplasma 16S rRNA gene sequences that were reported and deposited in GenBank.
- In fact, by mimicking laboratory restriction enzyme digestion and subsequent gel electrophoresis, computer-simulated 16S rDNA analysis produces virtual RFLP patterns from virtual digestions by each enzyme allowing high-throughput differentiation and identification of phytoplasma strains.

Phytoplasma taxonomy Classification based on Virtual RFLP analysis of 16S rDNA Computer-simulated RFLP analysis or *in silico* RFLP analysis of 16S rRNA gene sequences

- Cladistic and virtual RFLP analysis of over 900 available phytoplasma 16S rDNA sequences revealed that phytoplasma strains can be classified into:
- 29 groups (16Sr groups), and
- 89 subgroups.
- More recent work has extended these counts to
- 36 groups (16Sr groups), and
- at least 150 sub-groups.

Computer-simulated RFLP analysis of 16S rRNA genes Virtual RFLP

 Recent work involving computer simulated restriction digests of the 16Sr gene suggest there may be up to 28 groups, whereas other papers argue for less groups, but more subgroups.

Virtual RFLP patterns of Phytoplasmal 16S rDNA

<u>groupI</u>	groupII	<u>groupIII</u>	groupIV
<u>groupV</u>	<u>groupVI</u>	<u>groupVII</u>	<u>groupVIII</u>
<u>groupIX</u>	<u>groupX</u>	<u>groupXI</u>	<u>groupXII</u>
<u>qroupXIII</u>	<u>qroupXIV</u>	<u>groupXV</u>	<u>groupXVI</u>
<u>groupXVII</u>	<u>qroupXVIII</u>	<u>groupXIX</u>	<u>groupXX</u>
<u>groupXXI</u>	<u>qroupXXII</u>	<u>qroupXXIII</u>	<u>groupXXIV</u>
<u>groupXXV</u>	<u>qroupXXVI</u>	<u>groupXXVII</u>	<u>groupXXVIII</u>

Click on phytoplasma 16S rDNA RFLP groups to see patterns

Wei Wei, Robert E. Davis, Ing-Ming Lee and Yan Zhao. Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology (2007), 57, 1855-1876

Wikipedia,2015

Issues of *rrn* **interoperon sequence heterogeneity Ribosomal RNA operon (rrn)**

- Many phytoplasma strains have two rRNA operons:
- *rrn*A
- *rrn*B
- While *rm*A and *rm*B may be identical or nearly identical in some phytoplasma strains, apparent *rm* interoperon sequence heterogeneity exists in other strains.

16Sr Group	Strain	16Sr Group	Strain
16SrI: Aster yellows Group		I-F	Aster yellows phytoplasma strain ACLR-AY
I-A	Aster yellows witches'-broom phytoplasma (AYWB) rrn A	16SrII: Peanut WB group	
I-A	Aster yellows witches'-broom phytoplasma (AYWB) rrn B	II-A	Peanut witches'- broom phytoplasma
I-B	Onion yellows phytoplasma mild strain (OY-M) <i>rrn</i> A	II-B	` <i>Ca.</i> Phytoplasma aurantifolia'
I-B	Onion yellows phytoplasma mild strain (OY-M) <i>rrn</i> B	II-C	Cactus witches'- broom phytoplasma
I-B	` <i>Ca.</i> Phytoplasma asteris'	II-D	` <i>Ca.</i> Phytoplasma australasiae'
I-C	Clover phyllody phytoplasma strain CPh	16SrIII: X-disease group	
I-D	Aster yellows phytoplasma strain PaWB	III-A	Western X-disease phytoplasma
I-E	Blueberry stunt phytoplasma strain BBS3	III-B	Clover yellow edge phytoplasma

The new subgroup 16SrII-W associated with *Crotalaria* witches' broom diseases in Oman(Al subhi *et al.*,2017)

Wei *et al.*,2007

16Sr Group	Strain	16Sr Group	Strain
16SrIV: Coconut lethal yellows group		16SrVI: Clover proliferation group	
IV-A	Coconut lethal	VI-A	` <i>Ca.</i> Phytoplasma trifolii'
IV-B	Phytoplasma sp. LfY5(PE65)- Oaxaca	16SrVII: Ash yellows group	
IV-D	<i>Carludovica palmata</i> leaf yellowing phytoplasma	VII-A	` <i>Ca.</i> Phytoplasma fraxini'
16SrV: Elm yellows group		16SrVIII: Loofah witches'-broom group	
V-A	` <i>Ca.</i> Phytoplasma ulmi'	VIII-A	Loofah witches'- broom phytoplasma
V-B	` <i>Ca.</i> Phytoplasma ziziphi' strain JWBG1	16SrIX: Pigeon pea witches'- broom group	
V-C	Alder yellows phytoplasma strain ALY882	IX-A	Pigeon pea witches'- broom phytoplasma
V-G	<i>Ca.</i> Phytoplasma ziziphi'- related strain JWB-Kor1	IX-D	` <i>Ca.</i> Phytoplasma phoenicium

16Sr Group	Strain	16Sr Group	Strain
16SrX: Apple proliferation group		XII-C	Strawberry lethal yellows phytoplasma
X-A	` <i>Ca.</i> Phytoplasma mali'	XII-D	<i>`Ca.</i> Phytoplasma japonicum'
X-C	` <i>Ca.</i> Phytoplasma pyri'	XII-E	` <i>Ca.</i> Phytoplasma fragariae'
X-D	` <i>Ca.</i> Phytoplasma spartii′		
X-F	` <i>Ca.</i> Phytoplasma prunorum'	16SrXIII: Mexican periwinkle virescence group	
16SrXI: Rice yellow dwarf group		XIII-A	Mexican periwinkle virescence phytoplasma
XI-A	<i>Ca.</i> Phytoplasma oryzae'	16SrXIV: Bermudagrass white leaf group	
16SrXII: Stolbur group		XIV-A	<i>`Ca.</i> Phytoplasma cynodontis'
XII-A	` <i>Ca.</i> Phytoplasma solani'	16SrXV: Hibiscus witches'-broom group	
XII-B	<i>`Ca.</i> Phytoplasma australiense'	XV-A	<i>`Ca.</i> Phytoplasma brasiliense'

16Sr Group	Strain	16Sr Group	Strain
16SrXVI: Sugar cane yellow leaf syndrome group		16SrXX: Buckthorn witches' broom group	
XVI-A	` <i>Ca.</i> Phytoplasma graminis	XX-A	` <i>Ca.</i> Phytoplasma rhamni'
16SrXVII: Papaya bunchy top group		16SrXXI: Pine shoot proliferation group	
XVII-A	` <i>Ca.</i> Phytoplasma caricae'	XXI-A	` <i>Ca.</i> Phytoplasma pini'
16SrXVIII: American (TX+NE) Potato purple top wilt group		16SrXXII: Nigerian coconut lethal decline (LDN) group	
XVIII-A	` <i>Ca.</i> Phytoplasma americanum'	XXII-A	Phytoplasma sp. strain LDN
16SrXIX: Japanese chestnut witches'- broom group		16SrXXIII: Buckland Valley grapevine yellows group	
XIX-A	` <i>Ca.</i> Phytoplasma castaneae'	A-IIIXX	Buckland valley grapevine yellows phytoplasma

16Sr Group	Strain	16Sr Group	Strain
16SrXXIII: Buckland Valley grapevine yellows group		16SrXXVI: Mauritius sugar cane yellows D3T1 group	
XXIII-A	Buckland valley grapevine yellows phytoplasma	XXVI-A	Sugar cane phytoplasma D3T1
16SrXXIV: Sorghum bunchy shoot group		16SrXXVII: Mauritius sugar cane yellows D3T2 group	
XXIV-A	Sorghum bunchy shoot phytoplasma	XXVII-A	Sugar cane phytoplasma D3T2
16SrXXV: Weeping tea tree witches'- broom group		16SrXXVIII: Havana derbid phytoplasma group	
XXV-A	Weeping tea witches'-broom phytoplasma	XXVIII-A	Derbid phytoplasma

16Sr Group	Strain	
16SrXXIX: Cassia witches' broom group		
XXIX-E	' <i>Ca.</i> Phytoplasma omanense'	
16SrXXX: Salt cedar WB		
	' <i>Ca.</i> Phytoplasma tamaricis'	
16SrXXXI: Soybean stunt phytoplasma group		
	' <i>Ca</i> . Phytoplasma costaricanum'	
16SrXXXII: Malaysian periwinkle virescence phytoplasma group		
	<i>'Ca</i> . Phytoplasma malaysianum'	

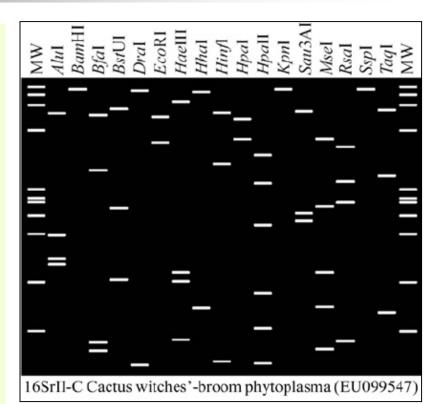
Abbreviations are as follows:

AY, aster yellows; WB, witches'-broom; WL, white leaf, rrn, rRNA operons.

16Sr Group	Strain	
16SrXXXIII: Allocasuarina phytoplasma group		
	'Ca. Phytoplasma allocasuarinae'	
16SrXXXVI: Foxtail palm phytoplasma group		
	'Ca. Phytoplasma wodyetiae'	
16SrXXXVII: Stylosanthes little leaf (StLL) phytoplasma group		
	`Candidatus Phytoplasma stylosanthis'	

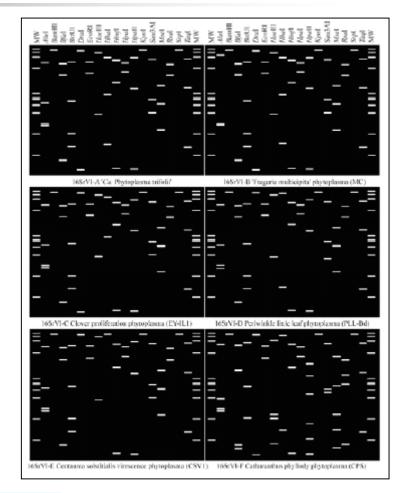
Abbreviations are as follows: AY, aster yellows; WB, witches'-broom; WL, white leaf, rrn, rRNA operons.

Computer-simulated RFLP analysis of 16S rDNA Sequence retrieval, alignment, and cladistic analysis Details of methods


- Wei *et al.*,2007 expanded the (old) RFLP analysis of 16S rDNA classification scheme through the use of computer-simulated RFLP analysis, achieving rapid differentiation and classification of phytoplasmas.
- Over 900 Phytoplasma 16S rRNA gene sequences were retrieved online from the National Center for Biotechnology Information (NCBI)'s nucleotide sequence database at <u>http://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi</u>.
- For the purpose of cladistic analysis, 16S rDNA sequences from representative taxa of non-phytoplasma mollicutes as well as Gram-positive low G+C walled bacteria were also retrieved from the nucleotide sequence database.
- The 16S rDNA sequences, compiled in FASTA format, were aligned using ClustalX (V1.83) program.
- The aligned 1.25 kb fragments were exported to pDRAW32 software for *in silico* restriction digestion and virtual gel plotting.

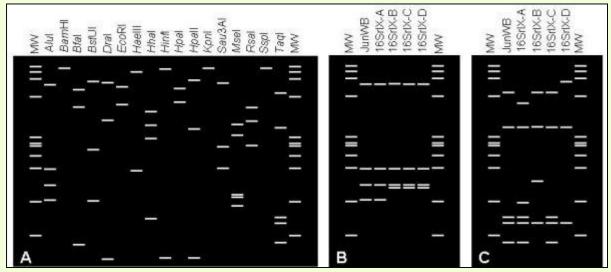
Computer-simulated RFLP analysis of 16S rDNA Details of method to classify phytoplasma 16Sr groups based on RFLP pattern similarity coefficient

- NCBI nucleotide sequence database, in which the restriction digestion profiles are simulated for a broad range of enzymes using *in silico* methods such as the AcaClone pDRAW32 system (http://acaclone.com).
- Based on numbers of similar and dissimilar fragments, the program calculates a similarity coefficient (F) for each pair of phytoplasma strains according to the formula of Nei and Li,1979 (Dice coefficients).
- Similarity coefficients for the restriction fragments reflect the number of shared and distinct fragments between any given strains, and, based on a similarity coefficient of 0.85, new 16Sr groups have been assigned.


Virtual RFLP analysis of DNA sequences and automated calculation of similarity coefficients

- This is an example of virtual RFLP patterns of a 16S rDNA nucleotide sequence that was "digested" in silico with 17 restriction endonuclease enzymes.
- The nucleotide sequence of this 16S rDNA (from cactus witches'-broom phytoplasma) was obtained from the GenBank database (GenBank accession number EU099547).
- This phytoplasma was originally classified, in 16S rDNA RFLP group 16SrII, on the basis of RFLP patterns that were obtained after actual, wet lab (actual wet laboratory) enzymatic digestion of 16S rDNA amplified in the polymerase chain reaction (PCR).

Virtual RFLP analysis of 16S rDNA sequences Identifies new subgroups in the clover proliferation phytoplasma group

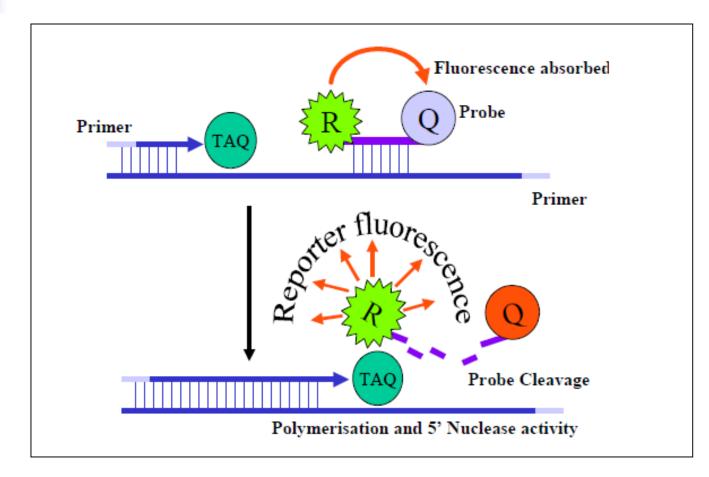

- Virtual RFLP patterns from *in silico* digestions of 16S rDNA F2nR2 fragments.
- Each aligned 16S rDNA sequence was trimmed to an approximately 1.25 kb fragment termed the F2nR2 region.
- Patterns of six phytoplasma strains representing three previously and three newly delineated 16SrVI subgroups are shown.
- Recognition sites for the following 17 restriction enzymes were used in the simulated digestions:
- AluI, BamHI, BfaI, BstUI (ThaI), DraI, EcoRI, HaeIII, HhaI, HinfI, HpaI, HpaII, KpnI, Sau3AI (MboI), MseI, RsaI, SspI, and TaqI.
- MW: φX174 DNA-*Hae*III digestion.

Virtual RFLP analysis of DNA sequences and automated calculation of similarity coefficients

- Virtual RFLP patterns derived from in silico digestions of 1.2 kb 16S rDNA fragments.
- (A) Patterns from juniper witches'-broom (JunWB) phytoplasma; digestion using 17 restriction endonuclease enzymes;
- (B) and (C) differentiation of JunWB from phytoplasmas belonging to previously designated subgroups in group 16SrIX by digestion of 16S rDNA with (B) *AluI* and (C) *TaqI*.
- Restriction fragments were resolved by in silico electrophoresis through 3% agarose gel.
- MW, ΦX174 DNA-HaeIII digestion.

Phytoplasma detection methods Real time (or TaqMan) PCR

- The previous diagnostic procedure (PCR followed by RFLP) is laborious and requires several post amplification steps.
- To overcome these problems, several approaches have been developed, amongst which universal and group-specific real-time PCR protocols have been proposed since 2004.
- Real-time PCR has recently replaced the traditional (conventional) PCR in efforts to increase specific, sensitive and quantitative detection.


Phytoplasma detection methods Real-time PCR

- During a real-time PCR run, accumulation of newly generated amplicons is monitored at each cycle by fluorescent detection methods, and so there is no need for post-PCR manipulation such as electrophoresis, which is required at the end of regular PCR.
- The amount of fluorescence, monitored at each amplification cycle, is proportional to the log of concentration of the PCR target.
- Real-time PCR amplicons are visualized through several labelling techniques, most of which specifically bind to a target sequence on the amplicon, while others aspecifically stain doublestranded (ds) DNA amplicons.
- TaqManR probes are the most commonly used ones for the diagnosis of phytoplasmas.

Phytoplasma detection methods Real-time PCR(Taqman) chemistry

- Although several real-time PCR chemistries exist, we generally use the TaqMan[™] real-time PCR chemistry which exploits the 5' nuclease activity of *Taq* DNA polymerase in conjunction with fluorogenic DNA probes.
- Each probe:
- Designed to hybridise specifically to the target PCR product,
- 2. Is labelled with a fluorescent reporter dye, and
- 3. A quencher dye.

Phytoplasma detection methods Real-time PCR(Taqman) chemistry

Real-time PCR Universal phytoplasma detection

- Recently three protocols for the universal diagnosis of phytoplasmas using direct real-time PCR amplification of the 16S rDNA gene have been developed.
- All of them exploited a TaqMan probe for detection i.e. real-time PCR protocol with a TaqMan probe.
- 16S rDNA-based primer/probe systems can be used to detect phytoplasmas belonging to several ribosomal subgroups with sensitivity similar to that of conventional nested PCR.

Name and sequence of primers and probes designed for the universal or group-specific detection of phytoplasma DNA by real-time PCR

Specificity	Target gene	Forward primer 5'-3'	Reverse primer 5'-3'	Probe 5'-3'	Reference
Universal	16S rDNA	CGTACGCAAGTATGAA ACTTAAAGGA	TCTTCGAATTAAACAACAT GATCCA	TGACGGGACTC OGCACAAGCG	Christensen et al., 2004
Universal	16S rDNA	CYS2Fw AGGTTGAACGGCCACATTG	CYS2Rv TTGCTCGGTCAGAGTT TCCTC	CYS2 Probe ACACGGCCCAAAC TCCTACGGGA	Galetto et al., 2005
Universal	16S rDNA	UniRNA Forward AAATATAGTGGAGGTTATC AGGGATACAG	UniRNA Reverse AACCTAACATCTCACGAC ACGAACT	UniRNA Probe ACGACAACCATGC ACCA	Hren <i>et al.</i> , 2007
FD	16S rDNA	fAY	rEY	1	Galetto et al.
Flavescence doree		GCACGTAATGGTGGGGACTT	GCTTCAATTCGGTGAC GAAAG		2005
FD	16S rDNA	Flavescence dorée Forward AAGTCGAACGGAGACCCTTC	Flavescence dorée Reverse TAGCAACCGTTTCCGATTGT	Flavescence dorée Probe AAAAGGTCTTAGT GGCGAACGGGT	Angelini <i>et al.</i> , 2007
FD	sec Y	FDgen Forward TTATGCCTTATGTTACTGCTT CTATTGTTA	FDgen Reverse TCTCCTTGTTCTTGCCAT TCTTT	FDgen Probe ACCTTTTGACTCA AITGA	Hren <i>et al.,</i> 2007
FD	16S rDNA	F1024 GTGAGATGTTAGGTT AAGTCCTAAAACGA	R1112 TTGGCAGTCTCGCTAA AGTCC	iProbe AACCCCTGTCGC TAGTTGCCAGC	Bianco et al., 2004
BN	Genomic fragment	StolFw AACCGCTCGCAAACAGC	StolRev ATTAGCGCCTTAGCTGTG	/	Galetto et al., 2005
BN	16Š rDNA	Bois noir Forward GGTTAAGTCCCGCAACGAG	Bois noir Reverse CCCACCTTCCTCCAATT TATCA	Bois noir Probe AACCCTTGTTGTT AATTGCCATCATTAAG	Angelini et al., 2007
BN	Genomic	BNgen Forward	BNgen Reverse	BNgen Probe	Hren et al.,
boisnoir	fragment	AAĞCAGGTTTAGCGAT GGTTGT	TGGTACCGTTGCTTCAT CATTT	TTAATACCACCTTC AGGAAA	2007
					(continued

Weintraub and Jones, 2010

Name and sequence of primers and probes designed for the universal or group-specific detection of phytoplasma DNA by real-time PCR Continued

Specificity	Target gene	Forward primer 5'-3'	Reverse primer 5'-3'	Probe 5'-3'	Reference
AP Apple proliferation	Nitro- reductase	faP ₂ AAGAGCAATTCGTACTTTCG		1	Galetto <i>et al.</i> , 2005
AP	Genomic	AP3	TGAC AP4	/	Jarausch
	fragment	GAAACATGTCCTATTGGTGG	CCAATGTGTGAAATCTGTAG		<i>et al.</i> , 2004
AP	16S rDNA	qAP-16S-F CGAACGGGTGAGTAAC ACGTAA	qAP-16S-R CCAGTCTTAGCAGTCGTT TCCA	qAP-16S TAACCTGCCTCTTA GACG	Baric and Dalla-Via, 2004
AP	16S rDNA		qAP-16S-R CCAGTCTTAGCAGTCGTT TCCA	AP-MGB CTGCCTCTTAGA CGAGG	Aldaghi <i>et al.</i> , 2007
AP	16S rDNA		rATRT CGCTTCAGCTACTCTTTGTG	TaqMan Probe CCCTTATGACCTGG GCTACA	Bisognin et al., 2008
ESFY	Ribosomal protein	rpLNS2f GTGCTGAAGCTAATTTATTG	rpLNS2r2 CAATATGGCTAGTTCTTTTT	/	Martini et al., 2007
16SrX	16S rDNA	P1 AAGAGTTTGATCCTGG CTCAGATT	R16(X)F1r CATCTCTCAGCATACTT GCGGGTC	1	Torres et al., 2005
'Ca. P. asteris' (onion yellows)	tuf	Tuf1 GCTAAAACTTGTCCACG TTGTACG	Tuf2 CGGAAATAGAATTGAGG ACGGT	TGTTTTAACTAAAA GAAGAAGGAGGAC GTCACACTGCCTT TTTCTCTC	Wei <i>etal.</i> , 2004
' <i>Ca</i> . P. asteris' (aster yellows)	16S rDNA	Aster yellows Forward TTGGGTTAAGTCCCGCAAC	Aster yellows Reverse CCCACCTTCCTCCAAT TTATCA	Aster yellows Probe CCAGCACGTAATGGTG GGGACTT	Angelini <i>et al.</i> , 2007
'Ca. P. asteris' (aster yellows)	16S rDNA	AACCCTCACCAGGT CTTGACA	CACGAGCTGACGACA ACCAT	/	Hollingsworth et al., 2008
Beet leafhopper- transmitted virescence agent	16S rDNA	16Sp303F AGGGCCTATAGCTCAGTT GGTTAGA	16Sp378R GTGGGCCTAAATGGA CTTGAAC	16TM329 CACACGCCTGATAAGC GTGAGGTCG	Crosslin et al., 2006

Weintraub and Jones, 2010

Phytoplasma taxonomy

PhyClassifier: An online tool for real-time identification and classification of phytoplasmas

- Recently, an interactive phytoplasma research tool, *PhyClassifier*, has been launched on the internet, transforming phytoplasma classification from individual laboratory procedures to a real-time World Wide Web operation.
- The *PhyClassifier server* is equipped with a suite of bioinformatic programs and 16S rDNA databases.
- The framework of *PhyClassifier* can be easily expanded to accommodate other genes or multiple DNA loci.
- The online tool can be accessed at <u>http://www.ba.ars.usda.gov/data/mppl/iPhyClassifier.html</u>.

Phytoplasma taxonomy

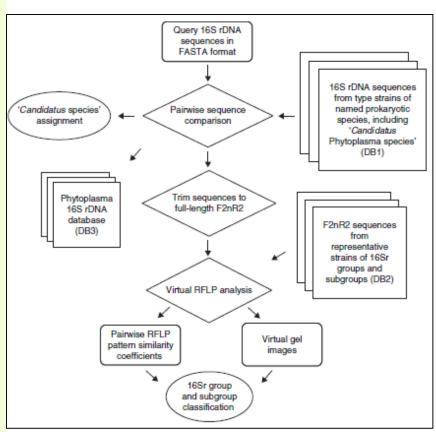
PhyClassifier: An online tool for real-time identification and classification of phytoplasmas

- Besides implementing the concepts and programs that we described previously (Wei *et al.*,2007,2008b), *PhyClassifier* integrates additional functions that we developed in the present study.
- Such new functions include:
- Overall sequence comparison and similarity score calculation,
- Intelligent trimming of input sequences, and Publication-ready virtual gel plotting.

Phytoplasma taxonomy 16Sr group/subgroup classification and *Candidatus* Phytoplasma' species assignment based on RFLP pattern

- similarity coefficient and overall sequence similarity scores
- *I*PhyClassifier performs:
- Sequence similarity analysis;
- Simulates laboratory restriction enzyme digestions and subsequent gel electrophoresis, and
- Generates virtual restriction fragment length polymorphism (RFLP) profiles.
- Based on calculated RFLP pattern similarity coefficients and overall sequence similarity scores, *PhyClassifier makes instant* suggestions on:
- 1. Tentative phytoplasma 16Sr group/subgroup classification status, and
- 2. 'Candidatus Phytoplasma' species assignment.

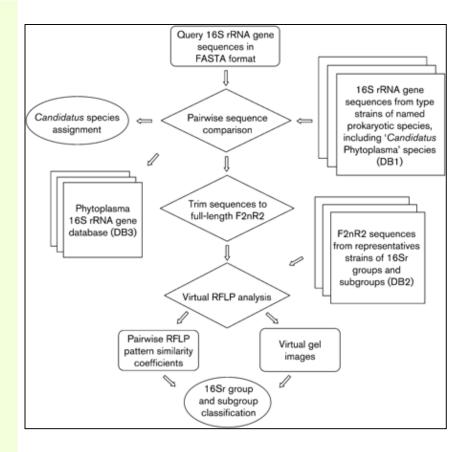
Phytoplasma taxonomy


16Sr group/subgroup classification and *Candidatus* Phytoplasma' species assignment based on RFLP pattern similarity coefficient and overall sequence similarity scores

 The virtual RFLP patterns of reference strains of all phytoplasma 16Sr groups and subgroups are available online at the PhyClassifier web site.

Participa da teres	<i>i</i> PhyClassifier
	Candidatus Phytoplasma' species assignment
New! multiple fasta allowed Paste query sequence in FASTA format here	 I6Sr group/subgroup classification based on similarity coefficient RFLP similarity coefficient table Deviation allowed Virtual gel image Compare RFLP patterns enzyme Alul Source group ALL Source
	Submit Query reset help
	Best viewed using the Firefox Browser Please cite the following reference and website. Zhao et. al. Int J Syst Evol Microbiol (2009). DOI 10.1099/ijs.0.010249-0
Upload your query sequence file Browse	

Diagrammatic representation of the operational process of *i*PhyClassifier


- Rectangles represent input and output files;
- Squares represent databases;
- Diamonds represent computational operations, and
- Ovals represent recommendations on tentative 16Sr group/subgroup classification status and '*Ca.* Phytoplasma' species assignment.

Zaho *et al.*,2009

Diagrammatic representation of the operational process of *i*PhyClassifier

- DB1, a set of full- or near-fulllength 16S rRNA gene sequences from reference strains of all formally described `*Candidatus* Phytoplasma' species.
- DB2, a set of F2nR2 sequences (*rrn* operons) from representative strains of established phytoplasma 16Sr groups and subgroups; and
- DB3, a set of F2nR2 sequences compiled from all phytoplasma 16S rRNA sequences currently deposited in the GenBank.

Weintraub and Jones, 2010

Phytoplasma Nomenclature Candidatus status

- In 1992, Subcommittee on the Taxonomy of Mollicutes proposed the use of the name Phytoplasma in place of the use of the term MLO (Mycoplasma-like organism) "for reference to the phytopathogenic mollicutes".
- In order to provide a formal description of the genus 'Ca. Phytoplasma', the IRPCM Phytoplasma/Spiroplasma Working Team Phytoplasma Taxonomy Group has published a list of 16S rRNA gene sequences of strains related to 'Ca. Phytoplasma' species (Firrao, 2004).

The International Committee on Systematics of Prokaryotes-Subcommittee on the Taxonomy of Mollicutes.

List of 16S rRNA gene sequences of strains related to *Ca.* Phytoplasma' species The trivial name *Candidatus* Phytoplasma'

Phylogenetic group	' <i>Candidatus</i> Phytoplasma' species	Reference of the species description paper	GenBank accession no.	Database entry description
Aster yellows group (16SrI)	'Ca. Phytoplasma asteris'	Lee et al. (2004a)	M 307 90	Mycoplasma-like organism (strain OAY)
			M86340	Mycoplasma-like sp.
			AF177384	Alfalfa stunt phytoplasma
			U96616	Phytoplasma sp. STRAWB2
			L33760	Tomato big bud mycoplasma-like organism
			AF268403	Aster yellows phytoplasma A isolate 98UW159
			AF268404	Aster yellows phytoplasma A isolate 98UW166A
			AF268405	Aster yellows phytoplasma O isolate 98UW166B
			AF503568	Aster yellows phytoplasma B
			AY075038	Mulberry dwarf phytoplasma
			AF217247	Potato purple top phytoplasma
			AF200431	Cirsium yellows phytoplasma
			AF245439	Aster yellows phytoplasma
			AF222064	Tomato big bud phytoplasma
			AF222063	Aster yellows phytoplasma
			AF222065	Clover phyllody phytoplasma strain CPh rrnA
			AF222066	Clover phyllody phytoplasma strain CPh rrnB
			X68373	Mycoplasma-like organism (substrain AAY)
			U89378	Phytoplasma sp.
			L33762	Clover phyllody mycoplasma-like organism
			D12569	Group I phytoplasma
			X68338	Mycoplasma-like organism (substrain ACLR)
			AF268408	Aster yellows phytoplasma A isolate 99UW111
			AF268409	Aster yellows phytoplasma B isolate 99UW108
			AF322644	Aster yellows phytoplasma strain AY1 clone 14 A
			AF291682	Carrot proliferation phytoplasma
			AF335107	Rehmannia glutinosa var. purpurea phytoplasma
			AF453328	Phytoplasma sp. PY1
			AF279271	Paulownia witches'-broom phytoplasma
			AF356846	Cactus phytoplasma 'Martinez-Soriano 2001'
			AF322645	Aster yellows phytoplasma strain AY1 clone 10
			L33767	Aster yellows mycoplasma-like organism
			AF268407	Aster yellows phytoplasma B isolate 99UW89
			AF268406	Aster yellows phytoplasma A isolate 99UW93
	'Ca. Phytoplasma japonicum'	Sawayanagi et al. (1999)	AB010425	Phytoplasma sp.

Phylogenetic group	' <i>Candida</i> tus Phytoplasma' species	Reference of the species description paper	GenBank accession n.o.	Database entry description
			AF147707	Chayote witches'-broom phytoplasma ChWBIII (Mor5)
			AF173558	Clover yellow edge phytoplasma
			AF236121	Peach rosette phytoplasma
			AF236122	Little peach phytoplasma
			AF189288	Clover yellow edge phytoplasma
			AF236123	Red suture phytoplasma
			AF190223	Poinsettia branch-inducing phytoplasma
			AF190226	Walnut witches'-broom phytoplasma rrnA
			AF190227	Walnut witches'-broom phytoplasma rrnB
			AF190228	Spiraea stunt phytoplasma
			AF244363	Black locust witches'-broom phytoplasma
			L33733	Canadian peach X mycoplasma-like organism
			D12580	Group II phytoplasma
			X77482	Mycoplasma-like organism (Italian clover phyllody)
			L33766	Clover yellow edge mycoplasma-like organism
			AF302841	Black raspberry witches'-broom phytoplasma clone BRWB7
			AF274876	Strawberry leafy fruit phytoplasma
Coconut lethal yellowing group (16SrIV)	To be described as ' <i>Ca.</i> Phytoplasma palmae'*	Suggested name†	U18747	Coconut lethal yellowing phytoplasma
			AF237615	Carludovica palmata leaf yellowing phytoplasma
			AF434989	Texas Phoenix palm phytoplasma
			U18753	Yucatan coconut lethal decline phytoplasma
			AF361020	Florida Panus decline phytoplasma
	To be described as ' <i>Ca</i> . Phytoplasma cocostanzaniae'*	Suggested name‡	X80117	Phytoplasma sp. strain LD
	To be described as 'Ca. Phytoplasma cocosnigeriae'*	Suggested name‡	Y14175	Phytoplasma sp. strain LDN
			Y13912	Phytoplasma sp. strain LDG
	'Ca. Phytoplasma castaneae'	Jung et al. (2002)	AB054986	'Candidatus Phytoplasma castaneae'
Elm yellows group (16SrV)	'Ca. Phytoplasma ziziphi'	Jung et al. (2003a)	AY072722	Ziziphus jujube witches'-broom phytoplasma
		-	AF279272	Ziziphus jujube witches'-broom phytoplasma
			AF305240	Ziziphus jujube witches'-broom phytoplasma
	To be described as ' <i>Ca</i> . Phytoplasma vitis'*	Suggested name†	AF176319	Flavescence dorée phytoplasma
			X76560	Mycoplasma (MLO; FD) transm. from V. vinifera to V. faba
	'Ca. Phytoplasma ulmi'	Lee et al. (2004b)	AF122910	Elm yellows phytoplasma strain EY1

Table 1. cont.

Phylogenetic group	' <i>Candidatus</i> Phytoplasma' species	Reference of the species description paper	GenBank accession no.	Database entry description
			AF122912	Phytoplasma HD1
			AF122911	Elm yellows phytoplasma strain WVEY
			AF189214	Elm yellows phytoplasma
			L33763	Elm yellows mycoplasma-like organism (rDNA)
			Y16395	Rubus stunt phytoplasma
			X68376	Mycoplasma-like organism (substrain ULW)
			AF305198	Virginia creeper phytoplasma
			AY028789	Alder yellows phytoplasma
			Y16387	Alder yellows phytoplasma
Clover proliferation group (16SrVI)	'Ca. Phytoplasma trifolii'	Hiruki & Wang (2004)	AY390261	'Ca. Phytoplasma trifolii'
			L33761	Clover proliferation mycoplasma-like organism (rDNA)
			AF036354	Fragaria multicipita phytoplasma
			AF190224	Fragaria multicipita phytoplasma rrnA
			AF190225	Fragaria multicipita phytoplasma rrnB
			X83431	Mollicutes sp. from S. melongena
			AF228052	Brinjal little leaf phytoplasma
			AF228053	Periwinkle little leaf phytoplasma
			AF409069	Clover proliferation phytoplasma strain EY-IL 2
			AF409070	Clover proliferation phytoplasma strain EY-IL 1
Ash yellows group (16SrVII)	'Ca. Phytoplasma fraxini'	Griffiths et al. (1999)	AF092209	Ash yellows phytoplasma
			AF105316	Ash yellows phytoplasma strain AshY5
			AF105315	Ash yellows phytoplasma strain AshY3
			AF105317	Ash yellows phytoplasma strain LWB3
			AF189215	Ash yellows phytoplasma
			X68339	Mycoplasma-like organism (substrain ASHY)
			L33759	Ash yellows mycoplasma-like organism (rDNA)
Loofah witches'-broom group (16SrVIII)	To be described as ' <i>Ca.</i> Phytoplasma luffae'*	Suggested name†	AF086621	Loofah witches'-broom phytoplasma
			AF353090	Loofah witches'-broom phytoplasma str. LfWB clone1 rrnB
			AF248956	Loofah witches'-broom phytoplasma
			L33764	Loofah witches'-broom mycoplasma-like organism
Pigeon pea witches'-broom group (16SrIX)	'Ca. Phytoplasma phoenicium'	Verdin et al. (2003)	AF515636	'Candidatus Phytoplasma phoenicium'
(AF515637	'Candidatus Phytoplasma phoenicium'
			AF248957	Pigeon pea witches'-broom phytoplasma
			AF455038	Almond witches'-broom phytoplasma strain AlmWB3
			AF455041	Almond witches'-broom phytoplasma strain AlmWB-N1

Table 1. cont.

Phylogenetic group	'C <i>andidatus</i> Phytoplasma' species	Reference of the species description paper	GenBank accession no.	Database entry description
			AF455040	Almond witches'-broom phytoplasma strain AlmWB-P1
			AF390136	Almond witches'- broom phytoplasma strain AlmWB1
			AF390137	Almond witches'- broom phytoplasma strain AlmWB2
			AF455039	Almond witches'-broom phytoplasma strain AlmWB4
			L33735	Pigeon pea witches'-broom mycoplasma-like organism
			Y18052	Knautia arvensis phyllody phytoplasma 23S
			Y16389	Picris echioides yellows phytoplasma
			U18763	Caribbean PPWB mycoplasma-like organism
			AF361017	Honduran Gliricidia little leaf phytoplasma
			AF361019	Florida Rhynchosia little leaf phytoplasma
Apple proliferation group (16SrX)	'Ca. Phytoplasma mali'	Seemüller & Schneider (2004)	AJ542541	Apple proliferation phytoplasma AP15
			AJ542542	Apple proliferation phytoplasma AP1/93
			AF248958	Apple proliferation phytoplasma
			X68375	Mycoplasma-like organism (substrain AT)
			X72206	Apple proliferation MLO
	'Ca. Phytoplasma pyri'	Seemüller & Schneider (2004)	AJ542543	Pear decline phytoplasma PD1
			X76425	Mollicutes
			Y16392	Pear decline phytoplasma
			Y16394	Peach yellow leafroll phytoplasma
	'Ca. Phytoplasma prunorum'	Seemüller & Schneider (2004)	AJ542544	European stone fruit yellows phytoplasma ESFY-G1
			AJ542545	European stone fruit yellows phytoplasma ESFY-G2
			AY029540	European stone fruit yellows phytoplasma
			X77372	Mycoplasma-like organism (plum leptonecrosis)
			X68374	Mycoplasma-like organism (substrain PPER)
			Y11933	Phytoplasma sp.
	'Ca. Phytoplasma spartii'	Marcone et al. (2004a)	X92869	Phytoplasma sp.
	'Ca. Phytoplasma rhamni'	Marcone et al. (2004a)	X76431	Mollicutes (from R. frangula)
	'Ca. Phytoplasma allocasuarinae'	Marcone et al. (2004a)	AY135523	'Allocasuarina muelleriana' phytoplasma
Rice yellow dwarf group (16SrXI)	'Ca. Phytoplasma oryzae'	Jung et al. (2003b)	D12581	Group III phytoplasma
Stolbur group (16SrXII)	'Ca. Phytoplasma australiense'	Davis et al. (1997)	L76865	Australian grapevine yellows phytoplasma
			U43570	Phormium yellow leaf phytoplasma rrnB
			U43569	Phormium yellow leaf phytoplasma rrnA
			AJ243045	Strawberry lethal yellows phytoplasma
			AJ243044	Strawberry green petal phytoplasma
	To be described as ' <i>Ca</i> . Phytoplasma solani'*	Suggested name†	AF248959	Stolbur phytoplasma
	a nytophasina solari		X76427	Mollicutes (from C. anuum to C. roseus)
			X76428	Mollicutes (from V. vinifera)
			2110120	

Table 1. cont.

Table 1. cont.

	Phylogenetic group	' <i>Candidatus</i> Phytoplasma' species	Reference of the species description paper	GenBank accession no.	Database entry description
-	BGWL group (16SrXIV) ' <i>Ca.</i> Phytoplasma brasiliense' group (16SrXV)	'Ca. Phytoplasma cynodontis' 'Ca. Phytoplasma brasiliense'	Marcone <i>et al.</i> (2004b) Montano <i>et al.</i> (2001)	AJ550984 AJ550985 AJ550986 AF248961 AF509321 AF147708	Bermuda grass white leaf phytoplasma Bermuda grass white leaf phytoplasma Bermuda grass white leaf phytoplasma Bermuda grass white leaf phytoplasma <i>Cynodon</i> white leaf phytoplasma <i>Hibiscus</i> witches'-broom phytoplasma strain HibWB26
	Other phytoplasmas not related to the above <i>Candidatus</i> species according to 16S rRNA gene sequences:				
	Mexican periwinkle virescence group (16SrXIII)	No name suggested		AF248960	Mexican periwinkle virescence phytoplasma
	Not assigned	No name suggested		U96614 AF495882 AJ289195 Y16391 AJ310849 Y17055 AJ289192 X76429 X76429 X76432 X83438 AF509324 AF509325 Y15865	Phytoplasma sp. STRAWB1 Chinaberry yellows phytoplasma strain CbY1 Vigna little leaf phytoplasma Bindweed yellows phytoplasma Phytoplasma sp. PinP Phytoplasma sp. (strain StLL) Stylosanthes little leaf phytoplasma Mollicutes (from C. roseus) Mollicutes (from S. officinarum) Mollicutes sp. 16S rRNA gene and tRNA-Ile Sorghum grassy shoot phytoplasma variant I Sorghum grassy shoot phytoplasma variant II Phytoplasma sp. (strain GaLL)

*According to Rule 28b of the Bacteriological Code, this is an incidental citation and does not constitute prior citation.

†Name proposed by the IRPCM Phytoplasma Working Team at the X International Congress of the International Organization of Mycoplasmology, Bordeaux, 1994.
‡Name proposed by the IRPCM Phytoplasma/Spiroplasma Working Team at the XIV International Congress of the International Organization of Mycoplasmology, Vienna, 2002.

IRPCM Phytoplasma taxonomy group,2004

Fruit tree phytoplasmas Group-, species-, and even strain-specific primers

- Increasing knowledge of molecular components and information about more isolates and sequences allowed the development of group-, species-, and even strainspecific primers.
- Ribosomal and non-ribosomal primers are too specific to detect all strains of apple proliferation(AP) group.
- Or
- Ribosomal protein genes (*rpl22* and *rps3*) are more variable markers useful for differentiating phytoplasma strains below the genus level.
- The primer pair rpF1/rpR1 was designed to amplify a segment of the ribosomal protein gene operon.

Most frequently used species-specific primer combinations for the detection of temperate fruit tree phytoplasmas

- Fruit tree phytoplasma-specific primers were developed to detect phytoplasmas in the apple proliferation(AP) group such as apple proliferation, Apricot chlorotic leaf roll, pear decline, etc. (Next Table).
- The primer pair P1/PYLRint amplifies rDNA from all phytoplasmas in the apple proliferation group.
- The most specific of these primer pairs is fPD/rPDS, detecting only German pear decline, California pear decline, and peach yellow leaf roll.

Most frequently used species-specific primer combinations for the detection of temperate fruit tree phytoplasmas

Phytoplasma	Primer	Location	Oligonucleotide sequence	product (bp)
AP	fAT/rAS	16S/IS	5'-CATCATTTAGTTGGGCACTT-3'	500
			5'-GGCCCCGGACCATTATTTATT-3'	
	P1/PYRLint	16S/IS	5'-AAGAGTTTGATCCTGGCTCAGGATT-3'	1,550
			5'-CCCGGCCATTATTAATTTTTATC-3'	
	fO1/rO1	165	5'-CGGAAACTTTAGTTTCAGT-3'	1,071
			5'-AAGTGCCCAACTAAATGAT-3'	
	qAP16SF/qAP16SR	168	5'-CGAGGTGAGTAACACGTAA-3'	75
			5'-CCATTAGCAGTCGTTTCC-3'	
	AP5/AP4	NRL-protein gene	5'-TCTTTTAATCTTCAACCATGGC-3'	483
			5'-CCAATGTGTGAAATCTGTAG-3'	
	AP3/AP4	NRL-protein gene	5'-GAAACATGTCCTATTGGTGG-3'	162
			5'-CCAATGTGTGAAATCTGTAG-3'	
	RpAP15f/rpAP15r	S10-operon	5'-AGTGCTGAAGCTAATTTGG-3'	920
			5'-TGCTTTTTATAGCAAAAGGTT-3'	
	RpAP15f2/rp(I)R1A	S10-operon	5'-CTCCTAAATCAGCTTCAAGT-3'	1,036
			5'-TTCTTTTTGGCATTAACAT-3'	
	rp(I)F1A/rp(I)R1A	S10-operon	5'-TTTTTCCCCTACACGTACTTA-3'	1,200

Burns,2009

Most frequently used species-specific primer combinations for the detection of temperate fruit tree phytoplasmas (Contiuned)

			5'-GTTCTTTTTGGCATTAACAT-3'	
ESFY	fAT/rPRUS	16S/IS	5'-CATCATTTAGTTGGGCACTT-3'	500
			5'-GGCCCAAGCCATTATTGATT-3'	
	P1/PYRLint	16S/IS	5'-AAGAGTTTGATCCTGGCTCAGGATT-3'	1,550
			5'-CCCGGCCATTATTAATTTTTATC-3'	
	PA2F/PA2R	16S/IS	5'-GCC CCG GCT AAC TAT GTG C-3'	1,187
			5'-TTG GTGGGC CTA AAT GGA CTC-3'	
	NPA2F/NPA2R	16S/IS	5'-ATGACC TGG GCT ACA AAC GTG A-3'	485
			5'-GGT GGG CCT AAA TGGACT CG-3'	
	fO1/rO1	165	5'-CGG AAACTTTTAGTTTCAGT-3'	1,071
			5'-AAG TGCCCAACTAAATGA T-3'	
PD	fPD/rPDS	16S/IS	5'-GACCCGTAAGGTATGCTGA-3'	1,400
			5'-CCCGGCCATTATTAATTTTA-3'	
	fAT/rPRUS	16S/IS	5'-CATCATTTAGTTGGGCACTT-3'	500
			5'-GGCCCAAGCCATTATTGATT-3'	
	fAT/rAS	16S/IS	5'-CATCATTTAGTTGGGCACTT-3'	500
			5'-GGCCCCGGACCATTATTTATT-3'	
	P1/PYRLint	16S/IS	5'-AAGAGTTTGATCCTGGCTCAGGATT-3'	1,550
			5'-CCCGGCCATTATTAATTTTTATC-3'	
	fO1/rO1	165	5'-CGG AAACTTTTAGTTTCAGT-3'	1,071
			5'-AAG TGCCCAACTAAATGA T-3'	

Burns,2009

Most frequently used species-specific primer combinations for the detection of temperate fruit tree phytoplasmas (Contiuned)

Phytoplasma	Primer	Location	Oligonucleotide sequence	product (bp)
PYLR	P1/PYRLint	16S/IS	16S/IS 5'-AAGAGTTTGATCCTGGCTCAGGATT-3'	
			5'-CCCGGCCATTATTAATTTTTATC-3'	
WX	P1/WXint	168/IS	5'-AAGAGTTTGATCCTGGCTCAGGATT-3'	1,600
			5'-GACAGTGCTTATAACTTTTA-3'	
	fU2W/rWX	168	5'-ATAATGGAGGTCATCAG-3'	430
			5'-CGAAGTTAGGTGACCGCTTTG-3'	
	fU3/Tmod	168/IS	5'-CTGTTACAAAGRGTAGCT-3'	420-422
			5'-ATCAGGCGTGTGCTCTA-3'	

- Apple proliferation (AP),
- Pear decline (PD),
- Peach yellow leaf roll (PYLR)
- Western X-disease (WX) of cherry

Basic keys for identification of phytopathogenic bacteria

Goszczynaska *et al.*,2000

Media and diagnostic tests

Agar media for plating plant extracts

- TGA
- KBC
- Tween A
- SCM
- TZC
- NA
- CVP
- KB
- NASA
- YMA+C
- MT

Diagnostic tests

- Gram reaction and KOH solubility test
- LOPAT tests
- Utilization of carbon sources: sucrose, mannitol, sorbitol, inositol, erythitol, homoserine
- Hugh and Leifson O/F test
- Fluorescence under UV light on KB, KBC, MT media
- Urease production
- Aesculin hydrolysis
- Gelatin liquefaction
- Starch hydrolysis
- Pathogenicity tests

Key tests used to characterize some genera of bacteria

PSEUDOMONADS	LOPAT	Levan production
		Oxidase
		Potato soft rot
		Arginine dihydrolase
		Tobacco hypersensitive reaction
	GATTa	Gelatine liquefaction
		Aesculin hydrolysis
		Tyrosinase activity
		Tartrate utilisation
	Other	Carbon source utilisation
		Pectolytic enzyme
		Toxin production
		Maximum growth temperature
		Ice nucleation activity
AGROBACTERIUM		3-Ketolactose test
		Growth and pigmentation in ferric ammonium broth
		NaCl tolerance
		Maximum growth temperature
		Acid production from carbohydrates
		Utilisation of L-tyrosine
		Alcali from malonic acid
SOFT ROT ERWINIAS		Hugh-Lelfson test
		Acetoin production
		Catalase
		Indole production
		Lecithinase production
		Growth at 36 °C
		Potato soft rot
		Acid from organic compounds
		H ₂ S from cystelne
		Urease production
XANTHOMONAS		Milk proteolysis
		Acid production from carbohydrydates
		Starch hydrolysis
		Tween 90 lypolysis
		Aesculin hydrolysis
		Gelatine liquefaction
		Urease production
		Growth at 35 °C

Pod spot, leaf spot and blight

No.	Description	Go to
1	Plate on KBC	2
	МТ	8
	Colonies fluorescent under UV light	8
2	Colonies non-fluorescent	Discard
	Off-white, semi-transparent colonies, Gr- rods	4
8	Yellow or other colour colonies	Discard
	ox-	5
4	OX+	Discard
5	LOPAT (+ +)	6
0	Other pattern	Discard
6	Carbohydrate utilisation: Sucrose Inositol Mannitol Erythitol Sorbitol Homoserine + + + + -	7
	Other pattern	Discard
7	Pod test – green, sunken lesions after 2 days	Pseudomonas syringae pv. syringae
	No lesions or small, brown lesions within 24 hours	Discard

Pod spot, leaf spot and blight

8	Colonies fluoresco	ent under l	JV light, G	r-rods		9
°	Non-fluorescent, y	ellow colo	nles, Gr- i	rods		16
9	Clear zone around	1 colonies				11
ő	No zone					10
10	LOPAT (- + +))				Pseudomonas chicorii
	Other pattern					11
11	Potato-rot positive	, no sucro	se utilisati	on		Pseudomonas viiddifiava
	Potato-rot negativ	e, sucrose	utilised			12
12	LOPAT (+ +)				13
12	Other pattern				Discard	
13	Pathogenic reaction	on on toba	000			Pseudomonas syringae pv. tabaci
	Hypersensitive rea	action on t	obacco			14
	Carbohydrate utilisation Sucrose Inositol Mannitol Erythitol Sorbitol Homoserine					
	+ +	+	+	+	-	7
14	+ -	-	-	-	-	15
	+ +	+	v	+	+	Isolated from pea: Pseudomonas syringae pv. pisi

Beans, Peas

Pod spot, leaf spot and blight

15	Pod test – water-soaked lesions after 3 days	Pseudomonas savastanoi pv. phaseolicola		
	No lesions or small, brown lesions within 24 hours	Discard		
18	Two zones around colonies: bigger: clear; smaller: opaque	17		
10	No zones around colonies	Discard		
17	Brown diffusible pigment present	Xanthomonas axonopodis pv. phaseoli var. fuscans, but go to 19		
	No brown pigment	18		
18	CVP Starch Tween 80 - + +	19		
	+ + +	Probably non-pathogenic, but go to 19		
19	Pathogenicity test - positive	Xanthomonas axonopodis pv. phaseoli		
	Pathogenicity test - negative	Discard		

V - variable reaction.

Key No. 2 – Cowpea

LEAF SPOT OR LEAF BLIGHT

Leaf spot or leaf blight

No.	Description	Go to		
	Plate on KBC	2		
1	мт	3		
2	Fluorescent, off-white, semi-transparent colonies, Gr- rode	Key No. 1, point 4		
	Yellow or differently coloured colonies, non-fluorescent	Discard		
3	Fluorescent, off-white, semi-transparent colonies, Gr- rods	Key No. 1, point 9		
	Yellow colonies, Gr- rods	4		
4	Two zones around colonies, bigger: clear; smaller: opaque	5		
	No zones	Discard		
5	Pathogenicity test – positive	Xanthomonas axonopodis pv. vignicola		
	Pathogenicity text - negative	Discord		

Key No. 3

Tomato

No.	Description	Go to
	Wilt	Køy No. 5
	Galls	Key No. 7
	Canker, browning of vascular tissue	Key No. 4
1	Soft rot of fruit and stems	Key No. 6
	Leaf, fruit and stem spots	2
	Pith necrosis, plate on MT, KBC, TGA	12

2	KBC	Key No. 1, point 2		
	SCM	Key No. 4, point 4		
	мт	8		
	Off-white, semi-transparent colonies, Gr- rods	4		
3	Yellow colonies, Gr rods	9		
	Colonies fluorescent under UV light	5		
4	Colonies non-fluorescent	Discard		
-	Clear zone around colonies	6		
5	No zone	6		
	LOPAT (+-+)	Pseudomonas viridiflava		
6	LOPAT (- + +)	Pseudomonas chicori		
	LOPAT (++)	7		
7	Carbohydrate utilisation Sucrose Inositol Mannitol Erythitol Sorbitol Homoserine			
	+ + + - + -	8		
	+ + + + -	Pseudomonas syringae pv. syringae		

Tomato

8	Pathogenicity test – leaf spots	Pseudomonas syringae pv. tomato		
	Pathogenicity test – negative	Discard		
	Two zones around colonies: bigger: clear; smaller: opaque	10 and 11		
9	No zones	Discard		
10	Go to Table 5 (p. 32) for more tests	11		
11	Pathogenicity test – leaf spots	Xanthomonas vesicatoria		
	Pathogenicity test – negative	Discard		
12	MT: non-fluorescent, circular beige colonies with raised centre, ~3 mm in diameter, 2 zones around colonies: bigger: clear; smaller: opaque			
	KBC: non-fluorescent, circular greenish colonies, ~1 mm in diameter	13		
	TGA: smooth, circular, slightly raised colonies with darker centre, 3 mm in diameter, orange-brown			
	Gr- rods: possibly of Pseudomonas corrugata	14		
13	Gr+	Discard		
14	See Table 1 (p. 23) for more tests	15		
45	Pathogenicity test – pith necrosis	Pseudomonas corrugata		
15	Pathogenicity test – negative	Discard		

Canker and wilt

Key No. 4 – Tomato

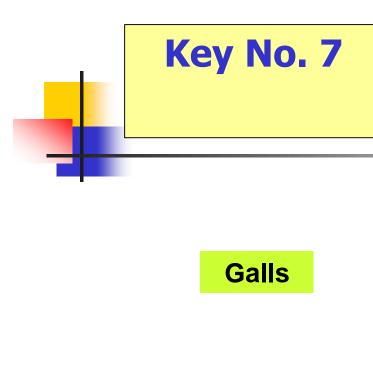
CANKER AND WILT

No.	Decortpillon	Gio to		
1	Plate on TZC by dilution plating, SCM and TGA	2		
2	TZC: mucoid, drop-shaped, white colonies with pink, half-moon-shaped centres	3		
	TGA: mucoid, white colonies			
	SCM: fluidal, mucoid, yellow colonies with grey flecks	4		
	TGA: yellow, mucoid, circular colonies	4		
_	Gr-rods	Key No. 5, point 6		
3	Gr+	Discard		
	Gr+	5		
4	Gr–	Discard		
5	Conduct pathogenicity test by inoculating tomato plants with 10 ⁷ cfu/ml suspension of pathogen. Symptoms develop after 14 days at 25 °C	6		
6	Pathogenicity test – positive	Clavibacter michiganense subsp. michiganense		
	Pathogenicity test – negative	Discard		

Key No. 5

Potato

Wilt


No.	Description	Go to	
1	Milky exudate from stems after 30 minutes	2	
'	No milky exudate from stems	3	
3	Isolate on CVP, TGA and TZC as in 2	5	
4	TZC: muccid, drop-shaped white colonies with pink, half-moon-shaped centres	6	
	TGA: mucoid, white colonies		
	CVP: pith formation, Gr-rode		
	TGA: circular, white colonies, Gr- rods	6	
5	TZC: muccid, drop-shaped white colonies with pink, half-moon-shaped centres, Gr- rods	6	
	TGA: mucoid, white colonies, Gr- rods		
	Hugh-Leifson test - oxidative	7	
6	Hugh-Leifson test – fermentative	11	
7	OX +	8	
'	OX-	Discard	
8	Colonies non-fluorescent on KB	9	
•	Colonies fluorescent on KB	Discard	
	PHB inclusions present	10	
9	No PHB inclusions	Discard	
10	Pathogenicity test at 28 °C - wilting	Raiston is solanacearum see Table 4 (p. 30) for biovar classification	
	Pathogenicity test - negative	Discard	
11	Potato soft rot positive	Erwiniz, see Table 7 (p. 35) for further classification	
	Potato soft rol negative	Discard	

Key No. 6

Fruits, Tubers, Bulbs and Leaves

Soft rots

No.	Description	Go to			
1	Plate on CVP, TGA and in the case of potatoes include TZC	2			
2	CVP: pith formation	3			
2	TGA: circular, white or cream-coloured colonies	°			
	TZC: mucoid, drop-shaped, white colonies with pink half-moon-shaped centres	Key No. 5, point 6			
	TGA: mucoid, white, fluidal colonies	6			
	1				
3	Gr– rods	4			
Ŭ	Gr+, Gr-cocci	Discard			
4	Potato soft-rot positive	5			
-	Potato soft-rot negative	Discard			
5	Hugh-Leifson test – fermentative	<i>Erwinia,</i> see Table 7 (p. 35) for further classification			
	Hugh-Leifson test – oxidative	6			
	-				
6	Colonies fluorescent on KB	7			
0	Colonies non-fluorescent on KB	Discard			
7	Utilisation of sucrose and trehalose	8			
<i>'</i>	No utilisation of sucrose and trehalose	9			
8	LOPAT (+ + + + -)	Pseudomonas marginalis			
9	LOPAT (+-+)	Pseudomonas viridiflava			

Key No. 7 – Galls

🖝 include at least 6 isolates from each gall.

No.	Description	Go to				
1	Isolate on NASA, YMA+C and NA	2				
2	Gr-rods, Hugh-Leifson oxidative	3				
ź	Gr+, Gr- cocci, Hugh-Leifson fermentative	Discard				
3	Catalase +, urease +	4				
3	Other pattern	Discard				
	NA: white to cream-coloured, circular, convex and smooth colonies					
4	YMA+C: pink, circular, transparent, convex to dome-shaped colonies	5				
	NASA: shiny, convex, circular colonies with bright pink centre and white margin after 5 days					
5	Pathogenicity test on tomato, tobacco or datura plants – galls	Agrobacterium, see Table 6 (p. 34) for biovar classification				
	Pathogenicity test – negative	Probably A. radiobacter				

Key No. 8 - Crucifers

-

LEAF SPOT, BLACK ROT AND SOFT ROT

No.	Description	Go to
1	Plate on MT, SX and CVP	2
	\$X: clear zones around colonies	
2	MT: yellow colonies with 2 zones: bigger: clear; smaller: opaque, or	3
	Off-white, semi-transparent, fluorescent colonies	5
	CVP: pith formation	Key No. 6, point 3
3	Gr– rods	4
3	Gr+, Gr-cocci	Discard
4	Pathogenicity test – leaf spot, black rot	Xanthomonas campestris pv. campestris
	Pathogenicity test – negative	Discard
-	OX+	6
5	ox-	7
6	LOPAT (- + +), no zone on MT	Pseudomonas chicorii
0	LOPAT (+ + + + -)	Pseudomonas marginalis
	•	
	LOPAT (+-+)	Pseudomonas viridiflava
7	LOPAT (++)	Pseudomonas syringae pv. maculicola

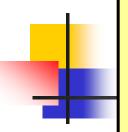
Leaf spots, black rot and soft rot

Primary key for screening and identification of bacteria from plants

Bradbury, J.F., 1970; revision, 1988

_	

- 1. Gram-positive Gram-negative
- 2. Cocci


od			co h	acilli
UU:	3 01	LUL	LO- D	aciiii

- 3. Spores present (visual or heat test) Spores absent
- 4. Cells more than 0.8µ wide Cells less than 0.8µ wide
- 5. Cocci (all cells round)

Rods or cocco-bacilli

- 6. Spores present (visual or heat test) Spores absent
- 7. Colonies whitish, or grayish to buff Colonies yellow Colonies other colors
- 8. Produces fluorescent on KB medium No fluorescent pigment
- 9. Oxidase negative Oxidase positive
- 10. Acid from glucose aerobically & anaerobically

	2
	5
<i>Micrococcus</i> or <i>Sarcina,</i> not a plant	
pathogen.	
	3
Bacillus	
	4
Not a plant pathogen, discard	
Coryneforms, Brevibacterium	
<i>Micrococcus</i> or <i>Sarcina</i> , not a plant	
pathogen.	
	6
Bacillus	
	7
	8
	16
	17
Pseudomonas	
	9
	10
	14
	11

Acid from glucose aerobically

No acid from glucose

11. Soft rots potato tissue

No soft rots of potato

12. Nitrate reduced

Nitrate not reduced

13. Curved rods becoming cocci with age

Straight rods

14. Acid from glucose both aerobically & anaerobically

Acid from glucose aerobically only

No acid from glucose

Achromobacter, Acinetobacter, and other non-plant pathogens, some less common plant pathogen, may key out here.

Pectobacterium (*carotovora* group)

Enterobacter, Escherichia, possibly *Pectobacterium*

Erwinia (*amylovora* group)

Arthrobacter, not a plant pathogens

Achromobacter, Cellulomonas, possibly Pseudomonas (few if any plant pathogens).

Azotomonas, Aeromonas, not a plant pathogen.

Pseudomonas (incl. some plant pathogens), *Agrobacterium*.

Alcaligenes, Pseudomonas (few plant pathogens).

12

13

Primary key... Continued

- 15. Acid from glucose both aerobically & anaerobically Acid from glucose both aerobically only No acid from glucose
- 16. Nitrate not reduced to nitrite, Kovacs oxidase negative(positive reaction delayed 15-60 sec.)

Nitrate reduced, Kovacs oxidase positive

17. Colonies reddish, Kovacs oxidase negative, Acid produced both aerobically & anaerobically from glucose, nitrate reduced, soft rots potato, causes soft rot of rhubarb,

Others

Erwinia (incl. *Erwinia stewartii, E. uredovora*, and *E. herbicola*)

16

Probably *Flavobacterium*, not a plant pathogen

Xanthomonas

Flavobacterium , Cytophaga

E. rhapontici

Discard

Key to bacteria likely to be associated with plants In details

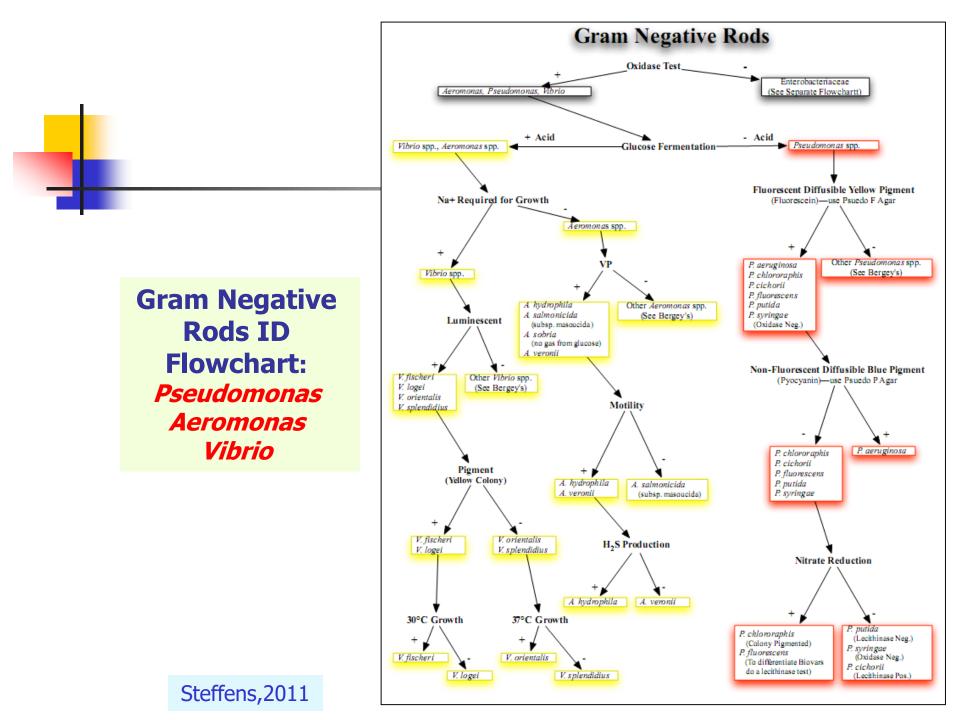
Bradbury, **J.F. 1988**

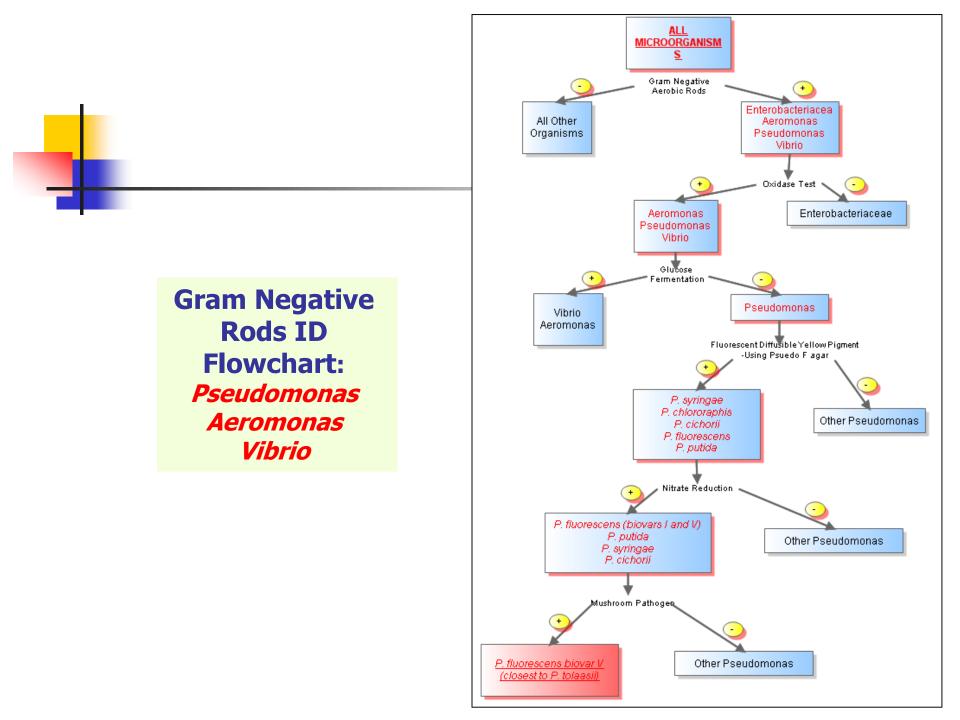
Key to bacteria likely to be associated with plants

Key to bacteria likely to be associated with plants

The following key is constructed using the characteristics that should have been discovered by use of the limited number of tests described in this paper. Obviously a larger number of tests, or special tests for particular groups of bacteria will give a more certain result. Uncertainty will arise both because of variability of bacteria and when difficult judgements have to be made by workers with little experience. The results obtained with this key will usually require some confirmation, depending on the level of certainty required. It might be considered sufficient to compare a description of the bacterium with the information gathered so far. In other cases some confirmatory tests will be needed. For suspected plant pathogens a successful pathogenicity test is usually the best confirmation. If facilities and/or materials are available, more sophisticated techniques may be used, such as serology, bacteriophage or bacteriocin typing, fatty acid profiles or protein electrophoresis patterns.

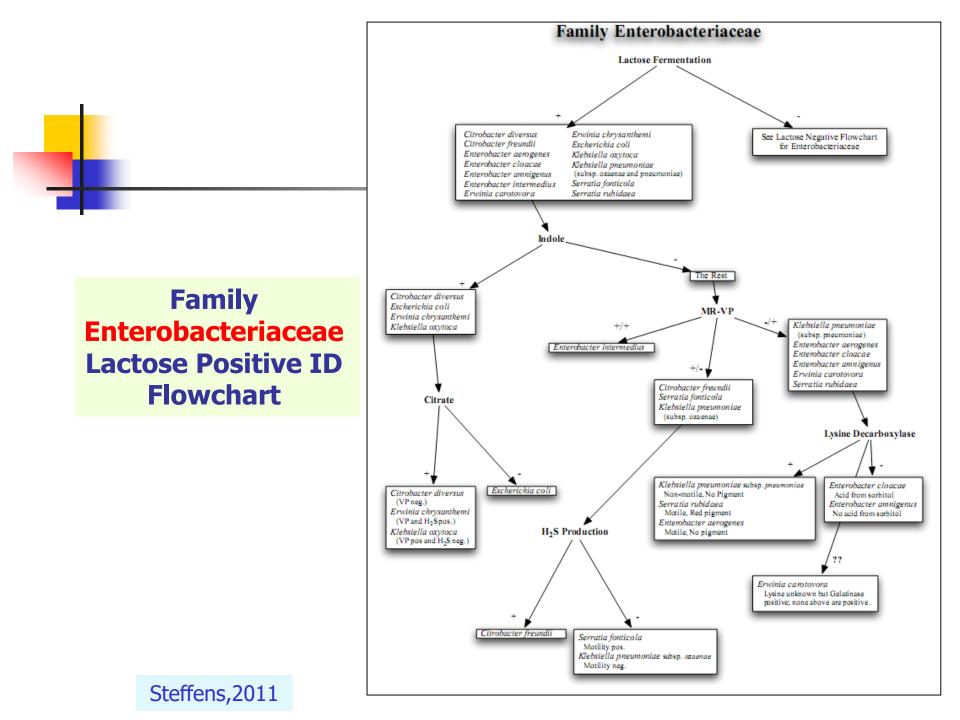
1. Gram positive 2 7 Gram negative 2. Cocci at all stages of growth Micrococcus, Sarcina, possibly Staphylococcus Cocci in older cultures, but definite cycle of rods to cocci Arthrobacter, Cellulomonas, Kurthia 3 Rods 3. Spores present (heat test or Bacillus, possibly Clostridium observed) 4 Spores absent

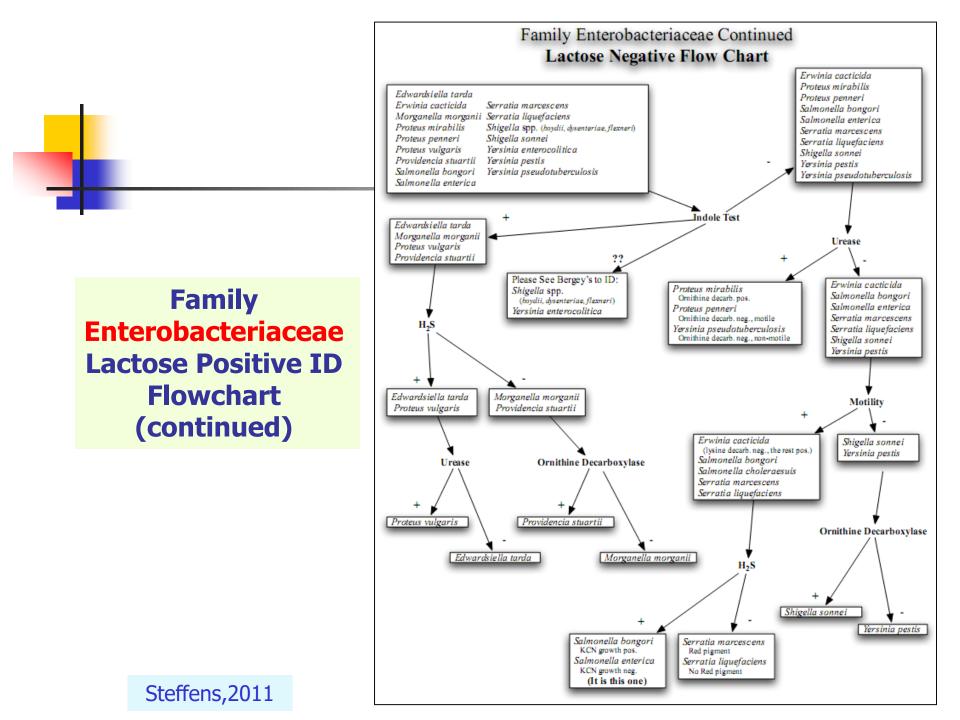

909


				18.	Peritrichous flagella	Agrobacterium, Rhizobium,	
4.	Regular shape, facultative anaerobe	Lactobacillus (common in silage				Acetobacter, Acinetobacter,	
	Irregular shape		5		Polar flagella	Pseudomonas spp. (including	
5.	Obligate aerobe		6		-	P. andropogonis, P. avenae	
	Facultative anaerobe	Cellulomonas, Oerskovia, Agromyces etc.				and P. ficuserectae)	
	N			19.	Rods, becoming cocci with age	Probably <u>Arthrobacter</u> (usually Gram-positive)	
۰.	Motile, nitrate not reduced Non-motile, nitrate not reduced	Curtobacterium Clavibacter			Straight rods	"Achromobacter", Cellulomonas,	
	Non-motile, nitrate reduced	Rhodococcus				possibly <u>Pseudomonas</u> (not a	
7.	Cocci (all cells round)	Micrococcus etc. (usually Gram		20		plant pathogen)	
	Distinctly curved rods	positive or variable) Vibrio, spirochaetes etc. (unus	ua]	20.	Acid from glucose aerobically and anaerobically	<u>Aeromonas</u> , <u>Azotomonas</u> (unlikely on plants)	r
	Sidelious curren rons	on plants)			Acid from glucose aerobically o	. ,	21
	Rods straight or nearly so		8		No acid from glucose		23
8.	Spores present Spores absent	Bacillus, possibly Clostridium	9	21.	Nitrate reduced		22
~		L	-		Nitrate not reduced, arginine	Pseudomonas spp. (including P.	
9.	Colonies whitish or greyish to Colonies yellow	ourr	10 24		negative	amygdali, cissicola, gladioli, and meliae), Agrobacterium	
	Colonies other colours		27	22.	Arginine negative	Pseudomonas spp. (including P.	
10.	Diffusible fluorescent pigment					cepacia, corrugata, glumae,	
	produced on King's medium B No fluorescence on KB		11			rubrilineans, rubrisubalbicans solanacearum, Agrobacterium	,
11.	Oxidase negative	Pseudomonas syringae group, P.			Arginine positive	Pseudomonas spp. (including	
	onzugoo negatizio	viridiflava (Fluorescent group	3			P. caryophylli)	
	Oxidase positive	I or II of Lelliott et al.1966	12	23.	Peritrichous flagella	Alcaligenes	
12	Arginine negative, potato not	Pseudomonas cichorii, P. agaric			Polar flagella	Pseudomonas acidovorans, P. pseudoalcaligenes	
12.	rotted	(Fluorescent group III)	-	24.	Acid from glucose aerobically		
	Arginine positive		13		and anaerobically		25 26
13.	Potato rotted, levan positive,	Pseudomonas marginalis, P. spp.			Acid from glucose aerobically o	-	26
	nitrate reduced Potato not rotted, levan and	(soft rotting)		25.	Motile	Erwinia herbicola, <u>E. ananas</u> , E. uredovora	
	nitrate negative	Pseudomonas tolaasii, fluoresc	ens		Non-motile	Erwinia stewartii	
	Not as above	(some biovars) Pseudomonas fluorescens (some		26.	Nitrate reduced, oxidase		
		biovars), P. aeruginosa			strongly positive, peritrichous	W	
14.	Oxidase negative		15		flagella or non-motile Nitrate not reduced, oxidase	Flavobacterium	
	Oxidase positive		20		weak or negative, single polar	Xanthomonas	
15.	Acid from glucose aerobically			27.	Colonies red or reddish		28
	and anaerobically Acid from glucose aerobically o	nlv	16 18		Colonies violet Colonies other colours	Chromobacterium Discard or refer to textbooks ()	
	No acid from glucose		19		coronies other corours	likely to be a plant pathogen)	not
16.	Potato rotted	Erwinia (soft rot group)		28.	Oxidase positive, aerobic	Pseudomonas, "Protaminobacter"	
	Potato not rotted		17		Oxidase negative, facultative		~~
17.	Nitrate reduced	Enterobacter, <u>Citrobacter</u> <u>Klebsiella</u> , Erwinia cypripedii			anaerobe		29
	Nitrate not reduced	Erwinia anylovora		29.	Soft rots potato and rhubarb, or causes pink wheat or	Erwinia rhapontici	
					browning of hyacinth bulbscales		

Bacterial flow charts Characteristics of miscellaneous bacteria

Identification flowcharts


The genus *Aeromonas* Characteristics of genus *Aeromonas*

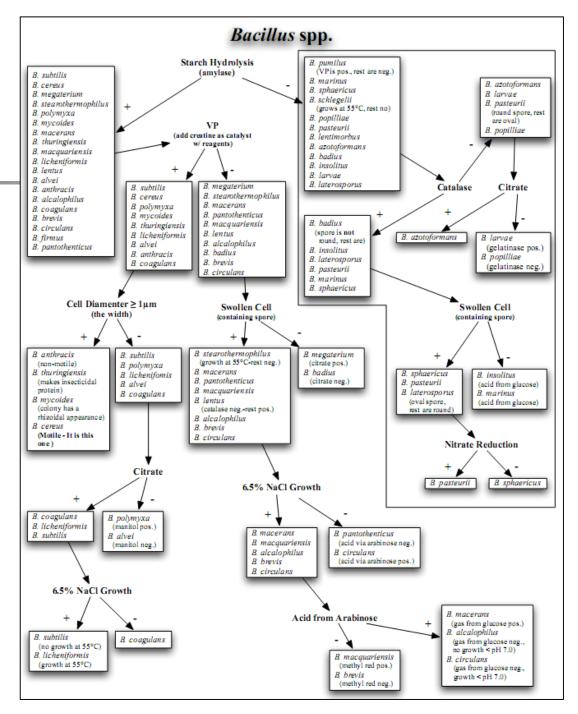

- The normal habitat of *Aeromonas* species is the aquatic environment.
- Gram-negative rods or cocco-bacilli (0.3-1.0 mm by 1.0-3.5 mm);
- Singly, in pairs, or short chains;
- Facultative anaerobes;
- Oxidase positive;
- Non-spore forming;
- Motile with a single polar flagellum (*A. media* and *A. salmonicida* are psychrophilic and nonmotile).

Characteristics of Fermentative, Oxidase-Positive Gram-Negative Rods Aeromonas

					Aeromonas sal	monicida	
	Aeromonas hydrofila	Aeromonas Aeromonas sobria caviae		Subsp. salmonicida	Subsp. achromogenes	Subsp. masoucida	Atypi- cal
Motility	+	+	+	_	_	_	_
Growth at 37°C	+	+	+	-	-	-	-
Diffusible brown pigment	_	-	_	+	-	-	D
β-galactosidase	+	+	+	+	+	+	D
Arginine dihydrolase	+	+	+	+	+	+	D
Lysine decarboxylase	D	D	D	D	-	+	-
Ornithine decarboxylase	_	-	-	-	-	-	_
Simmon's citrate	D	D	D	_	-	-	_
H ₂ S production	+	+	_	-	-	+	D
Urease	_	-	_	_	-	-	_
Indole	+	+	+	-	D	+	D
Voges-Proskauer reaction	+	D	-	_	-	+	D
Gelatin hydrolysis	+	+	+	+	-	+	D
Aesculin hydrolysis	+	-	+	+	-	+	D
Gowth in KCN	+	-	+	_	-	-	•
Acid from:							
Glucose	+	+	+	+	+	+	+
Mannitol	+	+	+	+	-	+	D
Inositol	_	_	_	_	-	-	-
Sorbitol	D	D	D	_	-	-	-
Sucrose	+	+	+	-	+	+	D
Arabinose	+	+	+	+	-	+	D

Spencer and Spencer,2004

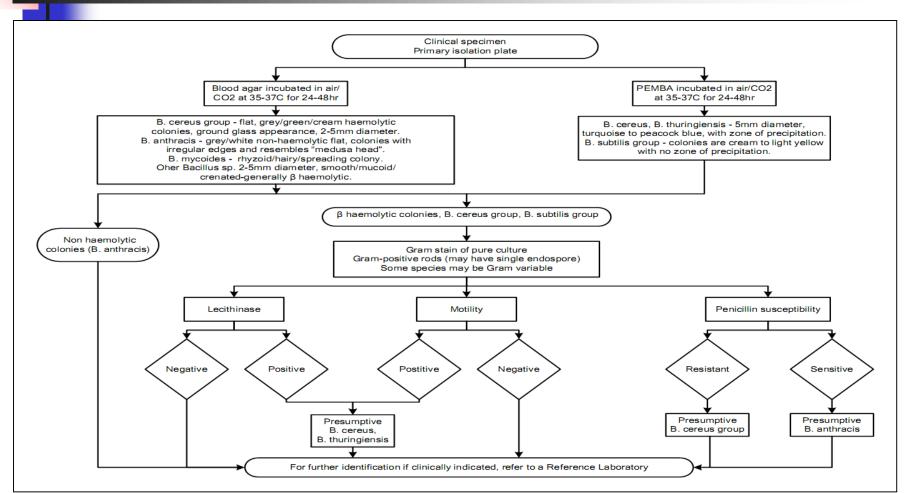
The genus *Bacillus*


Bacillus spp. ID Flowchart Simplified key for the tentative identification of typical strains of Bacillus species.

1. Catalase: positive 2
negative 17
Voges-Proskauer: positive
negative 10
Growth in anaerobic agar: positive 4
negative 9
Growth at 50°C: positive
negative 6
5. Growth in 7% NaCl: positive B. licheniformis
negativeB. coagulans
Acid and gas from glucose (inorganic N): positive B. polymyxa
negative7
 Reduction of NO₃ to NO₂: positive
negative B. alvei
8. Parasporal body in sporangium: positive B. thuringiensis
negative B. cereus
9. Hydrolysis of starch: positive B. subtilis
negative B. pumilus
10. Growth at 65°C: positive B. stearothermophilus
negative
11. Hydrolysis of starch: positive 12
negative
12. Acid and gas from glucose (inorganic N): positive B. macerans
negative
13. Width of rod 1.0µm or greater: positive B. megaterium
negative14
14. pH in V-P broth <6.0: positive B. circulans
negative B. firmus
15. Growth in anaerobic agar: positive
negative 16
16. Acid from glucose (inorganic N): positive B. brevis
negative B. sphaericus
17. Growth at 65°C: positive B. stearothermophilus
negative
18. Decomposition of casein: positive B. larvae
negative
19. Parasporal body in sporangium: positive B. popilliae
negative B. lentimorbus

^aNumbers on the right indicate the number (on the left) of the next test to be applied until the right-hand number is replaced by a species name. From Norris et al. (1981).

Bacillus spp. **ID Flowchart**


Steffens,2011

Identification of bacteria species

Isolate code	Gram Reaction	Cellular Morphology	Catalase	Oxidase Test	Indole Prod.	Motility Test	Methyl Red Test	Voge's Proskaver Test	Citrate Utilization	Ure ase Activity	Starch Hydrolysis	Gelatin Hydrolysis	NO ³ Reduction	Spore test	Growth on MacConkey	Glucose	Arabinaose	Xylose	la ctose	Sucrose	Raffinose	Galactose	Salicin	Maltose	Mannitol	Probable Identity
1	+	Cocci	+	+	-	-	-	-	-	+	-	+	-	-	-	+	-	+	-	+	+	-	-	-	-	Micrococcus leteus
2	-	Rods	+	+	-	+	-	-	-	+	-	+	-	-	-	+	-	-	-	+	-	-	-	-	+	Flavobacterium rigense
3	+	Rods	+	+	-	+	+	-	-	-	-	+	-	+	-	+	-	+	-	-	-	+	-	-	-	Bacillus brevis
4	-	Rods	+	-	-	+	-	+	+	+	+	+	-	-	+	+	+	+	+	+	-	-	+	-	+	Enterobacter cloacae
5	+	Rods	+	-	-	+	-	+	+	-	+	+	+	+	+	+	+	-	-	+	-	+	-	+	+	Bacillus licheniformis
6	-	Rods	+	+	+	+	-	-	-	+	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	Alcaligenes eutrophs
7	-	Rods	+	-	+	-	-	+	+	+	+	+	-	-	+	+	+	+	+	+	+	-	-	+	+	Klebsiella aerogenes
8	-	Rods	+	+	+	+	-	-	-	+	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	Alcaligenes eutrophs
9	-	Rods	+	-	-	+	+	+	+	-	+	+	-	-	-	+	-	+	+	+	-	-	+	+	+	Serratia liquefasciens
10	+	Rods	+	+	-	+	-	+	+	-	+	+	+	+	+	+	+	-	+	+	-	-	+	-	+	Bacillus subtilis
11	+	Rods	+	-	-	+	-	-	-	-	+	+	+	+	-	+	+	-	+	+	-	-	+	-	+	Bacillus macerans
12	-	Rods	+	-	-	-	-	-	+	+	-	-	+	-	-	+	-	-	-	-	-	-	-	-	-	Acinetobacter moffi
13	+	Rods	+	+	-	-	-	+	-	-	+	-	+	+	-	+	-	-	+	+	-	-	-	-	+	Bacillus mycoides
14	-	Rods	+	-	-	-	-	-	+	-	-	-	+	-	-	+	-	-	-	-	-	-	-	-	+	Acinetobacter mallei
15	+	Rods	+	+	-	+	-	+	-	-	+	-	+	+	+	+	-	+	+	+	+	+	-	+	-	Bacillus coagulans
16	+	Rods	+	+	-	+	-	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Bacillus polymyxa
17	+	Rods	+	-	-	+	-	+	+	-	+	+	+	+	+	+	+	-	-	+	-	+	-	+	+	Bacillus licheniformis
18	+	Rods	+	+	-	+	-	+	+	-	+	+	+	+	+	+	-	+	+	+	+	-	-	+	-	Bacillus cereus
19	-	Rods	+	+	-	+	-	-	+	-	-	+	+	-	+	+	-	-	-	-	+	-	-	+	-	Chromobacterium violaceum
20	+	Cocci	+	+	-	+	-	-	-	-	-	-	-	-	+	+	-	+	-	-	-	-	-	+	+	Micrococcus roseus
21	-	Rods	+	+	-	+	-	-	+	-	+	+	+	-	+	+	+	-	+	+	+	-	-	+	-	Pseudomonas aeruginosa
22	+	Rods	+	-	-	-	-	-	-	+	+	-	+	-	-	+	-	-	-	-	-	-	-	+	-	Corynebacterium pilosum
23	+	Cocci	+	+	-	-	-	-	+	-	-	-	-	-	+	+	+	+	-	+	-	-	-	+	-	Micrococus varians
24	+	Rods	+	+	-	+	-	-	+	-	+	+	-	+	+	+	+	+	-	+	-	-	-	-	+	Bacillus megaterium
25	-	Rods	+	+	-	+	-	-	+	-	-	-	-	-	-	+	-	-	-	+	-	-	-	-	-	Alcaligenes faecalis

Olajuyigbe and Ajele,2005

The genus *Bacillus* ID Flowchart

Standard Unit,2015

Symptoms and their Expression Key to pathogens

Plant Host/Symptoms Index Key to pathogens

Ronald Alexander Lelliott and David E. Stead, 1987

Host genus	Symptom	Possible pathogen(s)
Aechinea	Rotting of leaves and stems	Erwinia chrysanthemi
Agloanema	Rotting of leaves and stems	E. chrysanthemi
Agropyron	Leaf striping Leaf spotting	Pseudomonas avenae P. avenae
Agaricus	Blotching of caps	P. gingeri P. tolaasii
	Oozing from gills Pitting of caps	P. agarici Bacillus polymyxa
Allium	Soft skin, rotting Soft rotting	Pseudomonas cepacia P. gladioli pv. alliicola Erwinia carotovora subsp. carotovora E. herbicola
	Leaf necrosis	Pseudomonas syringae pv. porri P. syringae pv. syringae
Ananas	Fruit rotting	Erwinia ananas E. chrysanthemi
	Pink discoloration	Gluconobacter oxydans
Anthurium	Watersoaking, leaf and stem necrosis	Xanthomonas campestris pv. dieffenbachiae
Antirrhinum	Leaf spotting and necrosis	Pseudomonas syringae pv. antirrhini
Apium	Leaf spotting and necrosis	P. syringae pv. apii P. cichorii P. marginalis
Arachis	Wilting	P. solanacearum

Host genus	Symptom	Possible pathogen(s)					
-							
Areca	Leaf spotting and/or striping	Xanthomonas campestris pv. vasculorum					
Avena	Leaf and sheath spotting	Pseudomonas syringae pv. coronafaciens					
	Glume spotting Leaf striping Leaf death	P. s. pv. striafaciens P. s. pv. coronafaciens P. s. pv. striafaciens P. s. pv. striafaciens					
Axonopus	Leaf striping Leaf drop Stunting and withering	Xanthomonas axonopodis X. axonopodis X. axonopodis					
Beg onia	Stunting and wilting	Erwinia chrysanthemi Xanthomonas campestris pv. begoniae					
	Leaf spotting and necrosis	X. c. pv. begoniae Pseudomonas cichorii					
	Soft rotting of leaves and stems	Xanthomonas campestris pv. begoniae					
Berb eris	Leaf spotting	Pseudomonas syringae pv. berberidis					
	Shoot dieback	P. s. pv. berberidis					
Beta	Rounded galling usually at soil level on root Silvering and wilting of leaves of red beet, usually of seed plants	Agrobacterium tumefaciens Curtobacterium flaccumfaciens pv. betae					
	Rotting of roots	Erwinia carotovora E. chrysanthemi Pseudomonas marginalis					
Boerhavia	Leaf necrosis	Xanthomonas campestris pv. campestris					
	Veinal necrosis Leaf yellowing	X. c. pv. campestris X. c. pv. campestris					
Bougainvillea	Leaf spotting	Pseudomonas andropogonis					
	Leaf striping	P. andropogonis					
Brachutica	Stunting, yellowing, wilting	Erwinia chrysanthemi					
Br assica	Leaf spotting	Pseudomonas syringae pv. maculicola P. viridiflava					
	Leaf marginal necrosis	Xanthomonas campestris pv. campestris X. c. pv. armoraciae					

Host genus	Symptom	Possible pathogen(s)
	Leaf yellowing Veinal necrosis Soft rotting of stems and roots	X. c. pv. campestris X. c. pv. campestris X. c. pv. armoraciae Erwinia carotovora Pseudomonas marginalis P. viridiflava
Bromus	Leaf striping Leaf spotting	P. avenae P. avenae Xanthomonas campestris pv. cerealis
Camellia (C. japonica)	Leaf spotting Shoot dieback	Pseudomonas syringae pv. theae
~ .		P. s. pv. theae
Capsicum	Leaf spotting	Xanthomonas campestris
	Fruit spotting	pv. vesicatoria Clavibacter michiganens subsp. michiganense Xanthomonas campestris
		pv. vesicatoria
	Fruit rot Wilting	Erwinia carotovora Pseudomonas solanacearum
		Clavibacter michiganens subsp. michiganense
Chrysanthemum	Stunting and wilting Leaf and stem necrosis	Erwinia chrysanthemi E. chrysanthemi Pseudomonas syringae pv. syringae P. cichorii P. marginalis P. viridiflava
	Galling of leaves and stems	Agrobacterium tumefaciens
	Fasciation	Rhodococcus fascians
Cichorium	Leaf necrosis	Pseudomonas cichorii
Citrus	Leaf spotting	P. syringae pv. syringae Xanthomonas campestris
	Branch cankering	pv. citri Pseudomonas syringae pv. syringae Xanthomonas campestris pv. citri
Coffea	Leaf spotting	Pseudomonas syringae pv. garcae

Host genus	Symptom	Possible pathogen(s)
	Shoot dieback	P. s. pv. garcae
Colocasia	Wilting and rotting	Erwinia chrysanthemi
Corylus	Leaf spotting Fruit spotting Shoot dieback Bud necrosis	Xanthomonas campestris pv. corylina X. c. pv. corylina X. c. pv. corylina X. c. pv. corylina X. c. pv. corylina
Cotoneaster	Blossom blight, leaf and shoot necrosis	Erwinia amylovora
Crataegus	Blossom blight, leaf and shoot necrosis, cankering	E. amylovora
Cucumis	Wilting Leaf and stem spotting Fruit spotting	E. tracheiphila Pseudomonas syringae pv. lachrymans Xanthomonas campestris pv. cucurbitae Pseudomonas syringae
		pv. lachrymans
Cucurbita	Leaf spotting	Xanthomonas campestris pv. cucurbitae Pseudomonas syringae pv. lachrymans
Cyam opsis	Leaf and stem necrosis	P. s. pv. syringae
Cypripedium	Leaf spotting Leaf and stem necrosis	Erwinia cypripedii E. cypripedii
Dactylis	Yellow slime on upper parts	Clavibacter rathayi
Dah lia	Stunting and wilting Leaf necrosis	Erwinia chrysanthemi E. chrysanthemi Pseudomonas cichorii P. viridiflava
	Fasciation	Rhodococcus fascians
Delph inium	Black leaf spotting	Pseudomonas syringae pv. delphinii P. viridiflava
Dianthus	Stunting and wilting	Erwinia chrysanthemi Pseudomonas caryophylli
	Stem cracking	Erwinia chrysanthemi Pseudomonas caryophylli
	Leaf spotting	P. andropogonis
Dictyosperma	Leaf spotting and striping	Xanthomonas campestris pv. vasculorum

Host genus	Symptom	Possible pathogen(s)
Dieffenbachia	Soft rotting Leaf and stem necrosis	Erwinia chrysanthemi Xanthomonas campestris pv. dieffenbachiae
Echinocloa	Leaf streaking	X. c. pv. translucens
Eriobotrya	Stem canker and bud necrosis	Pseudomonas syringae pv. eriobotryae
Euchlaena	Leaf and sheath spotting	P. avenae P. andropogonis
	Leaf striping	P. avenae P. andropogonis
	Stalk rotting	P. avenae
Euphorbia	Stunting and wilting Watersoaking, defoliation and leaf spotting	Erwinia chrysanthemi Curtobacterium flaccumfaciens pv. poinsettiae
	Leaf spotting	Xanthomonas campestris pv. poinsettiicola
Fragaria	Leaf spotting and necrosis Wilting Leaf galling	Xanthomonas fragariae X. fragariae Rhodococcus fascians
Fraxinus	Stem cankering	Pseudomonas syringae subsp. savastanoi
Freesia	Corm scabbing, leaf necrosis	P. gladioli pv. gladioli
Geranium	Leaf spotting	Xanthomonas campestris pv. pelargonii
Gladiolus	Corm scabbing, leaf spotting	Pseudomonas gladioli pv. gladioli
Glycine	Leaf spotting	P. syringae pv. glycinea P. s. pv. phaseolicola P. s. pv. tabaci Xanthomonas campestris pv. glycines
Gossypium	Leaf spotting Stem spotting/rotting Ball spotting/rotting	X. c. pv. malvacearum X. c. pv. malvacearum X. c. pv. malvacearum
Hedera	Leaf spotting	X. c. pv. hederae
Helianthus	Leaf spotting	Pseudomonas syringae pv. helianthi
Hibiscus	Leaf and stem necrosis	P. s. pv. syringae
Hordeum	Leaf spotting	P. avenae

Host genus	Symptom	Possible
		pathogen(s)
		P. syringae pv. atrofaciens
		Xanthomonas campestris pv. hordei
	Leaf striping	Pseudomonas avenae
	Glume blotch and blackening	P. syringae pv. atrofaciens
		Xanthomonas campestris pv. hordei
	Seed blackening	Pseudomonas syringae pv. atrofaciens
Humulus	Rounded galling on stem,	Agrobacterium
	usually at soil level or on root	tumefaciens
Hyacinthus	Bulb rotting	Xanthomonas campestris pv. hyacinthi
		Erwinia rhapontici
	Leaf necrosis	Xanthomonas campestris pv. hyacinthi
Juglans	Stem cankering	Erwinia nigrifluens
		E. rubrifaciens
	Exudation	E. nigrifluens E. rubrifaciens
	Leaf and shoot spotting	Pseudomonas syringae
	and necrosis	pv. syringae
		Xanthomonas campestris pv. juglandis
	Fruit spotting	Pseudomonas syringae
		pv. syringae
		Xanthomonas campestris pv. juglandis
La blab	Leaf, stem and/or pod spotting	Pseudomonas syringae pv. pisi
Lactuca	Leaf spotting and necrosis	P. viridiflava
		P. cichorii
		P. marginalis
		Xanthomonas campestris pv. vitians
	Vascular necrosis	Pseudomonas viridiflava
		P. marginalis
	Butt rotting	P. viridiflava
		P. marginalis
	Soft rotting	Erwinia carotovora
		Pseudomonas marginalis P. viridiflava

Host genus	Symptom	Possible pathogen(s)
Lathyrus	Leaf, stem and/or pod spotting	P. syringae pv. pisi
Leersia	Leaf striping	Xanthomonas campestris pv. oryzae
	Leaf yellowing and/or withering	X. c. pv. oryzae
Lolium	Leaf streaking and wilting	X. c. pv. graminis
Lycopersicon	Wilting of leaves	Clavibacter michiganense subsp. michiganense Pseudomonas corrugata P. solanacearum
	Wilting of whole plant	P. solanacearum P. corrugata
	Irregular yellow-brown	
	necrotic areas on leaves	Clavibacter michiganense subsp. michiganense Xanthomonas campestris pv. vesicatoria
	Mealiness of leaves/stems	Clavibacter michiganense subsp. michiganense
	Scorching of leaves	C. michiganense subsp. michiganense
	Cankering	C. michiganense subsp. michiganense Xanthomonas campestris pv. vesicatoria
	Yellow discoloration of vascular system	Clavibacter michiganense subsp. michiganense
	Brown discoloration of vascular system	Pseudomonas solanacearum
	Pith necrosis	P. corrugata
	Marbling of young green fruit	P. corrugata Clavibacter michiganense subsp. michiganense
	Spotting of fruit	Xanthomonas campestris pv. vesicatoria Clavibacter michiganense subsp. michiganense Pseudomonas syringae pv. tomato
	Production of adventitious	P. solanacearum
	roots	P. corrugata
	Leaf and stem spotting and necrosis	Xanthomonas campestris pv. vesicatoria Pseudomonas syringae
		pv. tomato P. cichorii

Host genus	Symptom	Possible pathogen(s)
		P. marginalis P. viridiflava
	Stem necrosis	P. marginalis P. viridiflava
Mallotus	Leaf spotting Shoot blight	Erwinia mallotivora E. mallotivora
Malus	Root proliferation on stems or roots Rounded galls on stem, usually at soil level or on root	Agrobacterium rhizogenes A. tumefaciens
	Blossom blighting	Erwinia amylovora Pseudomonas syringae pv. syringae
	Branch cankering	Erwinia amylovora Pseudomonas syringae pv. syringae
	Dieback of shoots	Erwinia amylovora Pseudomonas syringae pv. syringae
	Shoot wilting	Erwinia amylovora
	Fruit rotting	E. amylovora
	Fruit blistering	Pseudomonas syringae pv. papulans
Mangifera	Leaf spotting	Xanthomonas campestris pv. mangiferaeindicae
~	Fruit spotting	X. c. pv. mangiferaeindicae
	Stem cankering	X. c. pv. mangiferaeindicae
Manihot	Leaf spotting	X. c. pv. manihotis X. c. pv. cassavae
	Wilting and shoot dieback	X. c. pv. manihotis
Matthiola	Leaf necrosis	X. c. pv. campestris
	Veinal necrosis	X. c. pv. campestris
	Leaf yellowing	X. c. pv. incanae X. c. pv. campestris X. c. pv. incanae
Medicago	Leaf and stem spotting	X. c. pv. alfalfae Pseudomonas marginalis
	Damping off	Xanthomonas campestris pv. alfalfae
	Wilting and stunting	Clavibacter michiganense subsp. insidiosum

Host genus	Symptom	Possible
		pathogen(s)
Morus	Rounded galls on stem, usually at soil level or on root	Agrobacterium tumefaciens
	Leaf spotting	Pseudomonas syringae pv. mori
14	Cankering	P. s. pv. mori
Mucuna	Leaf spotting	P. andropogonis
Musa	Wilting, necrosis	P. solanacearum
Nerium	Stem cankering and leaf galling	P. syringae subsp. savastanoi
Nicotiana	Leaf spotting	P. s. pv. tabaci P. cichorii
	Wilting	P. marginalis P. solanacearum
Olea	Stem cankering, and knotting	P. s. subsp. savastanoi
Oryza	Leaf and stem spotting	P. avenae
	Leaf striping	P. s. pv. oryzicola P. avenae Xanthomonas campestris
		pv. oryzicola X. c. pv. oryzae
	Leaf yellowing and/or withering	X. c. pv. oryzae X. c. pv. oryzae X. c. pv. oryzicola
Panicum	Stunting, yellowing, wilting Leaf striping	Erwinia chrysanthemi Pseudomonas avenae
Papaver	Leaf necrosis	P. cichorii
Paspalum	Leaf striping Top rotting	P. rubrilineans P. rubrilineans
Pastinaca	Necrosis, rotting	P. marginalis
Pelargonium	Leaf spotting	Xanthomonas campestris pv. pelargonii
	Leaf zonal necrosis Stem rotting Leafy galling	X. c. pv. pelargonii X. c. pv. pelargonii X. c. pv. pelargonii Rhodococcus fascians
Pennisetum	Stunting, yellowing, wilting Leaf blighting	Erwinia chrysanthemi Pseudomonas syringae pv. syringae
Persea	Leaf and shoot necrosis	P. s. pv. syringae
Phaseolus	Leaf, stem and pod spotting	P. s. pv. phaseolicola P. s. pv. syringae

Host genus Symptom Possible pathogen(s) P. viridiflava Xanthomonas campestris pv. phaseoli Curtobacterium flaccumfaciens pv. flaccumfaciens Leaf mosaic and P. s. pv. phaseolicola malformation P. s. pv. phaseolicola Leaf necrosis P. s. pv. syringae P. viridiflava Xanthomonas campestris pv. phaseoli Stem galling Pseudomonas viridiflava Curtobacterium Wilting flaccumfaciens pv. flaccumfaciens **Philadelphus** Leaf spotting P. syringae pv. philadelphii Erwinia chrysanthemi Rotting of leaves and stems Philodendron Xanthomonas campestris Phleum Leaf streaking pv. phlei X. c. pv. vesicatoria **Physalis** Leaf spotting Pseudomonas syringae Leaf and shoot necrosis Piper pv. syringae Leaf stem and pod spotting P. s. pv. pisi Pisum P. s. pv. syringae P. viridiflava Xanthomonas campestris Poa Leaf spotting pv. poae Swelling or cankering on X. populi pv. populi Populus shoots and branches Bark necrosis X. campestris pv. populi Erwinia salicis Dieback Primula Leaf spotting Pseudomonas syringae pv. syringae P. s. pv. primulae P. viridiflava Rounded galls on stem, Agrobacterium Prunus usually at soil level or on *tumefaciens* root Pseudomonas amygdali Cankering on branches and P. syringae pv. syringae shoots

Host genus	Symptom	Possible pathogen(s)
		P. syringae pv. morsprunorum Xanthomonas campestris pv. pruni
	Swellings on twigs and branches	Pseudomonas amygdali Xanthomonas campestris pv. pruni
	Leaf spotting	Pseudomonas syringae pv. morsprunorum P. s. pv. syringae P. s. pv. persicae Xanthomonas campestris pv. pruni
	Fruit spotting Dieback of shoots	X. c. pv. pruni Pseudomonas syringae pv. syringae P. s. pv. morsprunorum P. s. pv. persicae Xanthomonas campestris pv. pruni
	Bud death	Pseudomonas syringae pv. syringae P. s. pv. morsprunorum P. s. pv. syringae
Pyracantha	Blossom blight Blossom blight, leaf and shoot necrosis	F. s. pv. syringae Erwinia amylovora
Pyrus	Root proliferation on root or	Agrobacterium rhizogenes
	stem Rounded galls on stem usually at soil level or on root	A. tumefaciens
	Blossom blight	Erwinia amylovora Pseudomonas syringae pv. syringae
	Branch cankering	Erwinia amylovora P. s. pv. syringae
	Dieback of shoots	E. amylovora P. s. pv. syringae
	Shoot wilting Fruit rotting	E. amylovora E. amylovora Gluconobacter oxydans
Quercus	Exudation from acorns and cups	Erwinia quercina
Raphanus	Leaf necrosis	Xanthomonas campestris pv. campestris

		Possible pathogen(s)
	Veinal necrosis Leaf yellowing	X. c. pv. campestris X. c. pv. campestris
Rheum	Crown rotting	Erwinia rhapontici
Ricinus	Leaf spotting and necrosis	Xanthomonas campestris pv. ricini
	Stem necrosis	X. c. pv. ricini
Rosa	Root proliferation on root or stem	Agrobacterium rhizogenes
	Rounded galls on stem mainly at soil level or on roots	A. tumefaciens
	Leaf and shoot necrosis	Pseudomonas syringae pv. syringae
Roystonea	Leaf spotting and/or striping	Xanthomonas campestris pv. vasculorum
Rubus	Root proliferation on root or	Agrobacterium
	stem	rhizogenes
	Rounded galls on stem mainly at soil level or on roots	A. tumefaciens A. rubi
	Erumpent longitudinal galls on canes	A. tumefaciens
Saccharum	Leaf mottling	Erwinia chrysanthemi
-	Leaf mosaic	$E.\ chrysanthemi$
	Leaf striping	Pseudomonas rubrilinean. P. rubrisubalbicans
	Top rotting	P. rubrilineans
		Xanthomonas campestris pv. vasculorum
	Leaf scalding	X. albilineans X. campestris pv. vasculorum
	Yellow slime	X. c. pv. vasculorum
Sain tpaulia	Rotting of leaves and petioles	Erwinia chrysanthemi E. carotovora
Salix	Rounded galls on stem, usually at soil level, or on root	Agrobacterium tumefaciens
	Wilting Reddening of leaves	Erwinia salicis E. salicis
Secale	Leaf and stem spotting	Xanthomonas campestris pv. secalis

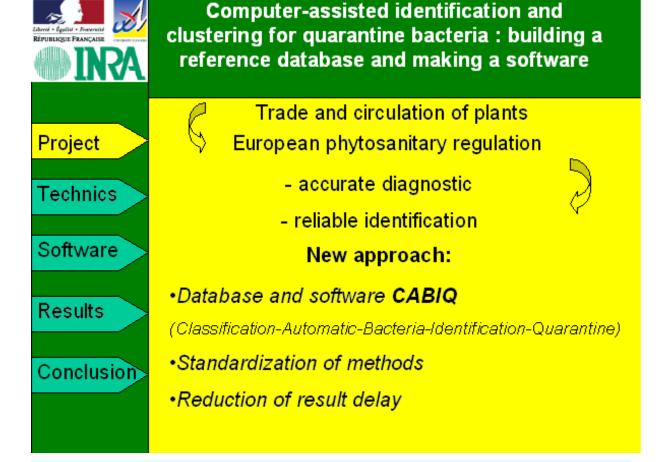
Host genus	Symptom	Possible pathogen(s)
Sesamum	Leaf spotting	Pseudomonas syringae pv. sesami Xanthomonas campestris
	Stem lesions	pv. sesami Pseudomonas syringae pv. sesami
		Xanthomonas campestris pv. sesami
	Capsule blackening	Pseudomonas syringae pv. sesami
		Xanthomonas campestris pv. sesami
Setaria	Leaf striping	Pseudomonas avenae
Solanum	Stunting	Erwinia carotovora E. chrysanthemi
	Wilting	E. carotovora E. chrysanthemi Pseudomonas solanacearum Clavibacter michiganense subsp. sepedonicum
	Chlorosis of leaves, leaf rolling	E. carotovora E. chrysanthemi Clavibacter michiganense subsp. sepedonicum
	Stem lesions	Erwinia carotovora E. chrysanthemi Pseudomonas solanacearum
	Tuber rotting	Erwinia carotovora Erwinia carotovora Clavibacter michiganense subsp. sepedonicum Pseudomonas solanacearum P. marginalis P. viridiflava
Sorbus	Blossom blight, leaf and shoot necrosis	Erwinia amylovora
Sorghum	Leaf spotting	Pseudomonas andropogonis
	Leaf striping	P. syringae pv. syringae P. andropogonis P. syringae pv. syringae Xanthomonas campestris pv. holcicola

Host genus	Symptom	Possible pathogen(s)
Stra nvaesia	Blossom blight, leaf and shoot necrosis	Erwinia amylovora
Syringa	Leaf necrosis Dieback of shoots	Pseudomonas syringae pv. syringae
T		P. s. pv. syringae
Tagetes	Leaf spotting	P. syringae pv. tagetis
Thysanolaena	Leaf spotting and/or striping	Xanthomonas campestris pv. vasculorum
Trií olium	Leaf and stem spotting	Pseudomonas andropogonis P. syringae pv. syringae Xanthomonas campestris pv. alfalfae
Triticum	Yellow slime on upper parts Yellow or white spots on leaves and sheaths	Clavibacter tritici C. tritici
	Pink grain Leaf spotting and streaking	Erwinia rhapontici Pseudomonas syringae pv. atrofaciens P. s. pv. syringae Xanthomonas campestris pv. undulosa
*	Glume blotching	Pseudomonas syringae pv. atrofaciens Xanthomonas campestris pv. undulosa
	Seed blackening	Pseudomonas syringae pv. atrofaciens
Tulipa	Spotting and cracking of leaves Stunting and veinal silvering Spotting and necrosis of scales	Curtobacterium flaccumfaciens pv. oortii C. flaccumfaciens pv. oortii C. flaccumfaciens pv. oortii
Vicia	Leaf spotting	Pseudomonas andropogonis P. syringae pv. pisi P. s. pv. syringae
	Stem lesions	P. andropogonis P. s. pv. pisi P. s. pv. syringae
Vigna	Leaf spotting	Pseudomonas syringae pv. pisi P. s. pv. syringae P. viridiflava

Key to pathogens

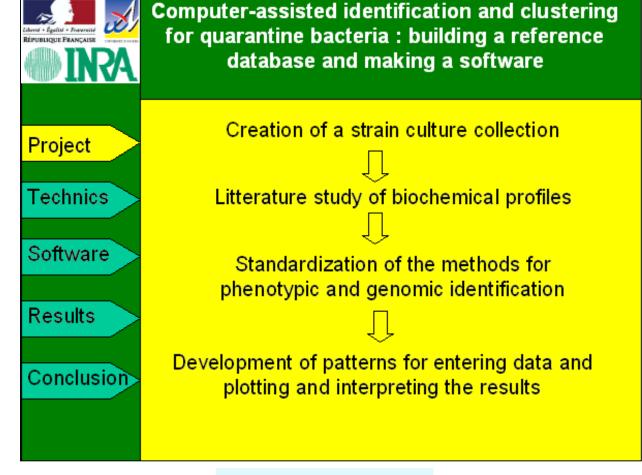
Host genus	Symptom	Possible pathogen(s)
	Stem and pod lesions	P. s. pv. pisi P. s. pv. syringae
Vitis	Leaf spotting	P. s. pv. syringae P. viridiflava Xanthomonas ampelina
	Dieback	Pseudomonas syringae pv. syringae
	Blighting	Xanthomonas ampelina
	Stem galling	X. ampelina
	Stem gaming	Agrobacterium tumefaciens
Zea	Stunting and wilting	Erwinia chrysanthemi E. stewartii
		Clavibacter michiganense subsp. nebraskense
	Necrosis or soft rotting of leaves	Erwinia chrysanthemi
	Leaf striping	E. stewartii
		Xanthomonas campestris pv. vasculorum
		Pseudomonas avenae
		P. andropogonis
		P. rubrilineans
		Clavibacter michiganense subsp. nebraskense
		Xanthomonas campestris pv. holcicola
	Top death	Erwinia stewartii
		Pseudomonas avenae
		P. rubrilineans
		Xanthomonas campestris pv. vasculorum
	Stalk rotting	Erwinia chrysanthemi Pseudomonas avenae
	Root rotting	Clavibacter michiganense pv. nebraskense
	Seedling blight	Erwinia stewartii
Zingiber	Wilting	Pseudomonas solanacearum
Zinnia	Leaf spotting	Xanthomonas campestris pv. zinniae
Zizania	Leaf striping	X. c. pv. oryzae
	Leaf yellowing and/or withering	X. c. pv. oryzae

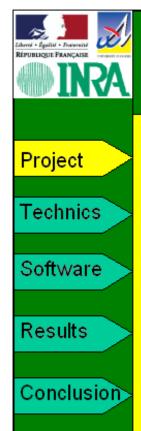
Lelliott and Stead, 1987



Poliakoff *et al.*,2004 & 2005

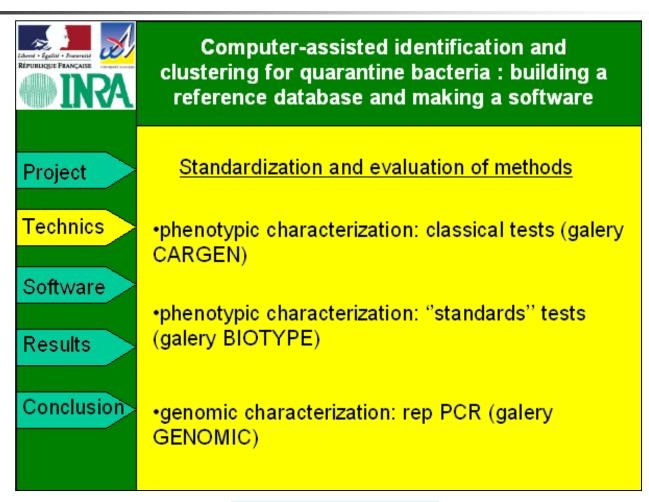
CABIQ Windows-based system for computerized identification of quarantine bacteria

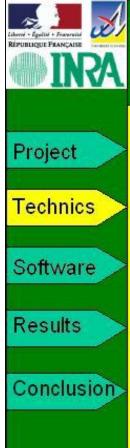

- This tool will be released as a Windows-based system called CABIQ ('Classification Automatique Bactéries Identification Quarantaine') incorporating the database.
- This tool is innovative because it combines:
- Traditional identification tests, and
- Molecular methods in a single system to provide a more rapid and reliable identification.
- It proposes an user-friendly interface to:
- Obtain detailed statistics for each genus, species and strip compared to a reference;
- Identify an isolate and validate its identification,
- Classify automatically an isolate within a dendrogram (UPGMA).


M., Sutra .Poliakoff F., Caffier D., François C., Rivoal C., Fischer-Le Saux L., Perret S., Bonneau S.& G. Hunault 2004 & 05.

Poliakoff *et al.,* 2004. Presented in EPPO Conference on Quality of Diagnosis and New Diagnostic Methods for Plant Pests.

- About 500 reference strains have been used to initiate the database, including:
- 1. Conventional phenotypic tests, and
- 2. The Biotype 100 (BioMérieux) galleries.
- The CABIQ system, with its database and reference matrices, is a guide on the tests to be done when identifying new isolates.
- 3. Results on repetitive PCR will soon be added to the system.
- This system was designed for phytosanitary regulations of the European Union to survey for certain quarantine pests and to prohibit their introduction and spread into the EU.




Computer-assisted identification and clustering for quarantine bacteria : building a reference database and making a software

Creation of a strain culture collection

A database of 500 reference strains

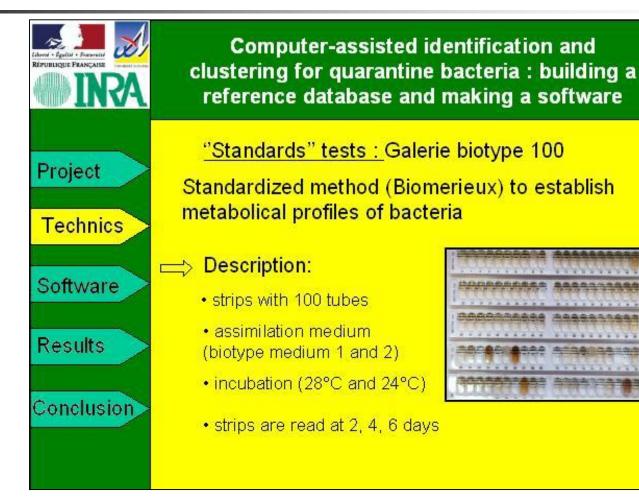
Gamgroup	Genus	Quarantine bacteria
+	Clavibacter	Ć. michiganznsis subsp. insidiosus
		C. michiganensis subsp. michiganensis
		C. michiganensis subsp. sepedonicus
+	Curtobacterium	C. flaccumfaciens pv. flaccumfaciens
-	Pseudomonas	P. syringae pv. persicae
-	Xanthomonas	X arboricola pr. prini
		X avonapodis pv. citri,
		X anonopodis pv aurantifolii,
		X avonapodis pv. citrumelo
		X fragarice
		X arboricola pv. fragariae
-	Ralstonia	R solanacearum
-	Briterobarteri areae	Pantoea stewartii subsp. stewartii
		Brwiniaanylovera

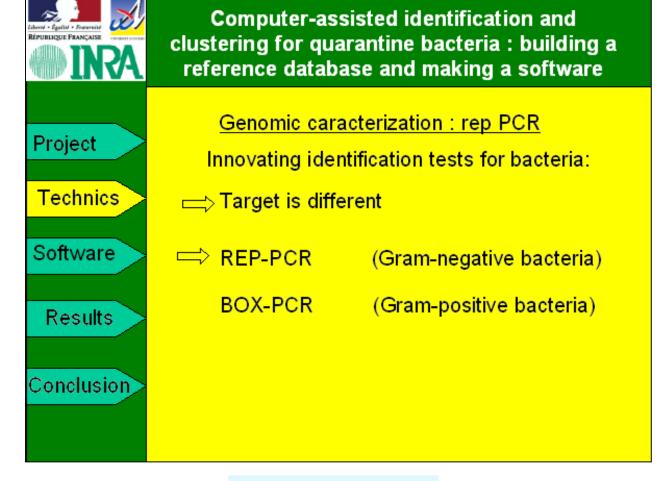
Computer-assisted identification and clustering for quarantine bacteria : building a reference database and making a software

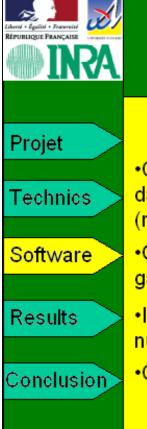
Classical identification tests for bacteria:

 General characteristics: Gram stain, morphological, and growth characteristics.

•Orientation tests for each bacterial group: physiological, enzymatics

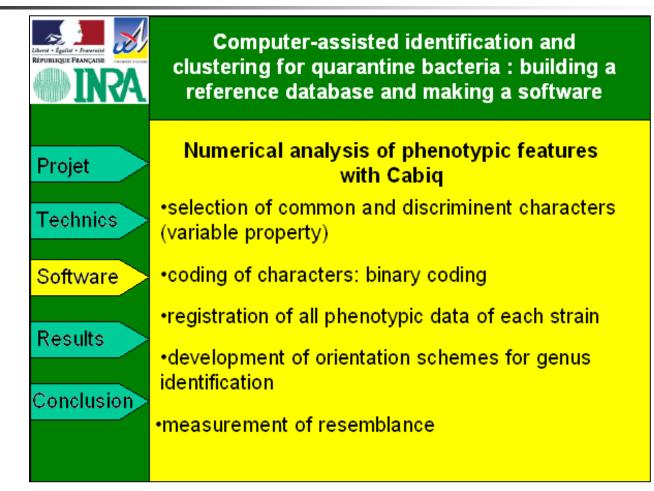

Diagnostic tests linked to genus:


metabolical and biochemical


characteristics:

carbon source utilization

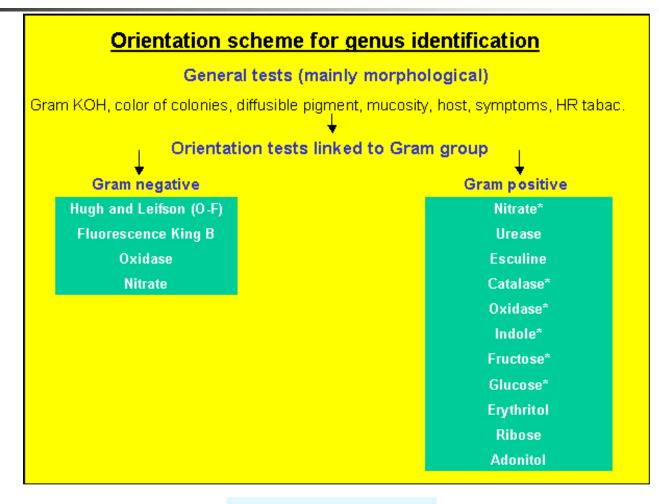
Computer-assisted identification and clustering for quarantine bacteria : building a reference database and making a software

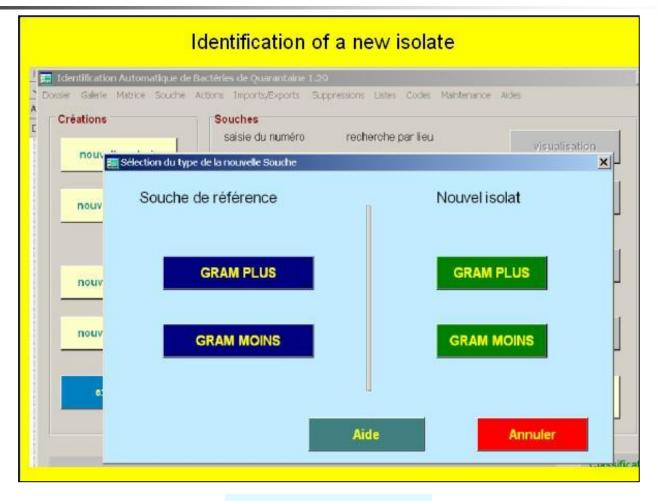

Making the software Cabiq

•Convivial interface to input data, read and manage data and files linked to galeries, bacteria characters (reference strains and isolates)

 Obtain statistics detailed by genus, species and galery within the reference basis

 Identify and validate strain identification by numerical analysis.


Cluster strain among taxa



CABIQ Rules to determine the probable genus of a Gram-positive bacterium

 Rules to determine the probable genus of a Grampositive bacterium according to the results of orientation tests (O/F, enzymatic activities, production of acid from different carbon sources):

Test results	Probable genus
Urease (+), no esculin (-), orange colonies on YPGA	Rhodococcus
Urease (-), esculin (+), acid from erythritol (+),	Curtobacterium
acid from ribose (+), acid from adonitol (+)	
Urease (-), esculin (+), acid from erythritol (-),	Clavibacter/Rathayibacter
acid from ribose (-), acid from adonitol (-)	

Specific tests of diagnostic depending on probable genus

e.g. Diagnostic tests for genus fom Gram positive

Rhodococcus	Curtobacterium	Clavibacter/ Rathayibacter
None	Lactose	Lactose
	Sorbitol	Sorbitol
	Host	Mannitol
		Gelatine
		NaCl 5%
		Levane
		Host

dition d'un isolat (entificati	ion of a ne	w isolate	
		he envoyée pa	r l'INRTBE pour confi	rmation de diagnostic	
CFBP	70200				
Site	LNPV -	lsolé de	Medicago sativa		
Opérateur	gH 💌	Symptôme	non renseigné		
					31/03/04
Couleur colonie	e beige			Pigment diffusible	aucun
			NR ?	Indigoïdine	Aucun NR ?
Mucosité	+	i			
			Aide	Annule	Ok

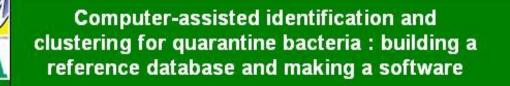
		lde	entifica	tion of	a new	/ isolate	÷		
Saisie d'un	isolat de type	GRAM + orie	entelsolat						
CFBP	70200								
Test d'ori Nitrate	ientation Gr Uréase	am + Esculine	Catalase	Oxydase	Indole	Fructose	Glucose I	Erythritol	Ribose
+	+	+	+	+	+	+	+	+	+
-	-	-	-	-	-	-	-	-	-
-	-	+	-	-	-	+	+	+	+
Adonitol									
+				E E	solat recon			×	
-					le genre prot	able de l'isolat e	st : Curtobacte	rium	
				L		OK			
		Galerie "IN	RALNPV"		Aide		Annule		Ok

Tréations	Souches		
	saisie du numéro	recherche par lieu	visualisation
nouvelle galerie	70200	tous les lieux 💌	
nouveau dossier	04999 <u>*</u> 06488	recherche par hote	édition
	06499 06490	tous les hotes	
	06491 06492	choix de la Matrice	1
nouvelle matrice	70200	CURTO24B	galerie
nouvelle souche		paramètres	matrice
		CURTO24B BIOTYPE100	
exemples	-	70200 INRALNPV	Identification
		-	

CABIQ Measurement of resemblance

- A paired comparison method may be used to check which reference strains are most similar to the unknown isolate.
- After these comparisons, CABIQ calculates the interrelation between the unknown isolate and each taxon through likelihood coefficient, normalized likelihood coefficient (also called identification score) or Willcox's probability, and relative likelihood.
- For the example given in Table 7, the unknown isolate is identified as *Clavibacter michiganensis* subsp. *nebraskensis*, since this taxon has the highest identification score.
- The modal likelihood fraction proves the absolute degree of affinity to the species in the matrix.
- In the case of Table 8, the unknown isolate looks like *Clavibacter sepedonicus* but this identification is not validated.

Subspecies	Oxidase	Levan	Glucose	Erythritol	Esculin
Clavibacter michiganensis subsp. insidiosus	0.14	0.10	0.43	0.10	0.90
Clavibacter michiganensis subsp. michiganensis	0.10	0.10	0.81	0.10	0.90
Clavibacter michiganensis subsp. nebraskensis	0.10	0.90	0.90	0.10	0.90
Clavibacter michiganensis subsp. sepedonicus	0.10	0.20	0.67	0.10	0.90
Clavibacter michiganensis subsp. tessellarius	0.10	0.80	0.90	0.10	0.90
Unknown isolate	0	1	1	0	1

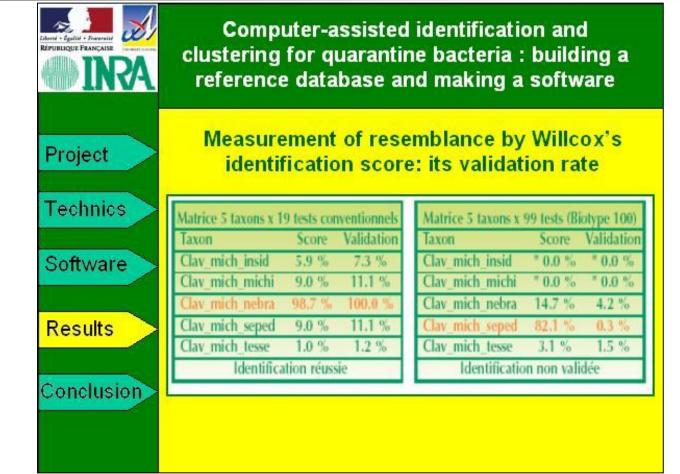

Table 6 Comparison of an unknown isolate with the positivity frequency matrix of the different subspecies of *Clavibacter michiganensis* given by CABIQ

5 taxa and 19 conventional tests	Score	Modal likelihood fraction
Clavibacter michiganensis subsp. insidiosus	5.9%	7.3%
Clavibacter michiganensis subsp. michiganensis	9.0%	11.1%
Clavibacter michiganensis subsp. nebraskensis	98.7%	100.0%
Clavibacter michiganensis subsp. sepedonicus	9.0%	11.1%
Clavibacter michiganensis subsp. tessellarius	1.0%	1.2%
Unknown isolate	Successful i	identification

Table 7 Identification score of Lapage and Wilcox and modal likelihood fraction given by CABIQ (example of validated identification)

5 taxa and 19 conventional tests	Score	Modal likelihood fractior
Clavibacter michiganensis subsp. insidiosus	0.0%	0.0%
Clavibacter michiganensis subsp. michiganensis	0.0%	0.0%
Clavibacter michiganensis subsp. nebraskensis	14.7%	4.2%
Clavibacter michiganensis subsp. sepedonicus	82.1%	0.3%
Clavibacter michiganensis subsp. tessellarius	3.1%	1.5%
Unknown isolate	Non validat	ed identification

Table 8 Identification score of Lapage and Wilcox and likelihood fraction given by CABIQ (example of non-validated identification)

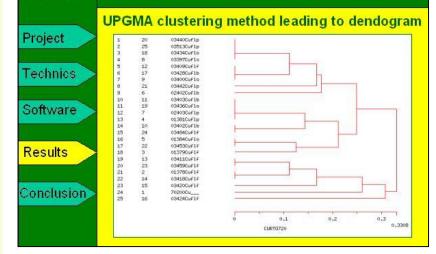


Measurement of resemblance by comparison by pair method (Jaccard-Sneath) of an isolate with subspecie Clavibacter michiganensis positivity matrix.

-						
	÷.	rin I	h	m	10	۱æ.
		U.		11		CS.

Project

ware		Oxydase	Levane	Glucose	Erythritol	Esculine
ware	Clav_mich_insid	0.14	0.10	0.43	0.10	0.90
	Clav_mich_michi	0.10	0.10	0.81	0.10	0.90
ults	Clav_mich_nebra	0.10	0.90	0.90	0.10	0.90
	Clav_mich_seped	0.10	0.20	0.67	0.10	0.90
clusion	Clav_mich_tesse	0.10	0.80	0.90	0.10	0.90
clusion	Isolat 60007	0	1	1	0	1


réations	Dosslers	s Suppressions Listes Codes Maintenar	
nouvelle galerie	IDENT	édition	galerie
nouveau dossier		verification	plus/moirs
		recherche par auteur	classification
		tous les auteurs	dendrogramme
nouvelle souche		rochorcho par galorio toutes les galeries	n veau de coupure
exemples		recherche par année	groupes après coupure/CCD

Numerical analysis of phenotypic features with the CABIQ software

- Import and export strains for automatic clustering using the UPGMA (Unweighted Pair Group Method with Average) leading to dendrograms and CDC (coefficients of diagnosis capacity) computations, considering bacterial strains as Operational Taxonomic Units.
- CABIQ software is moreover able to import and export data using classical formats (Dbase, Excel, text, Phylip).
- Clustering of an unknown isolate 70200 in the dendrogram of subspecies of *Curtobacterium flaccumfaciens* given by CABIQ.

Computer-assisted identification and clustering for quarantine bacteria : building a reference database and making a software

Clustering of an unknown isolate

QBOL DNA-barcode identification of quarantine organisms

www.qbol.org

QBOL: Development of a new diagnostic tool using DNA barcoding to identify quarantine organisms in support of plant health

Peter Bonants, EMBL-EBI, 20 oct 2008

DNA barcoding is a new technique that uses a short DNA sequence from a standardized and agreed-upon position in the genome as a molecular diagnostic for species-level identification.

QBOL Q-bank database

- QBOL is financed by the 7th Framework Program of the European Union.
- QBOL makes collections harboring plant pathogenic quarantine organisms available.
- Informative genes from selected species on the EU Directive and EPPO lists are DNA barcoded.
- Sequences, together with taxonomic features, will be included in an internet-based Q-bank database.

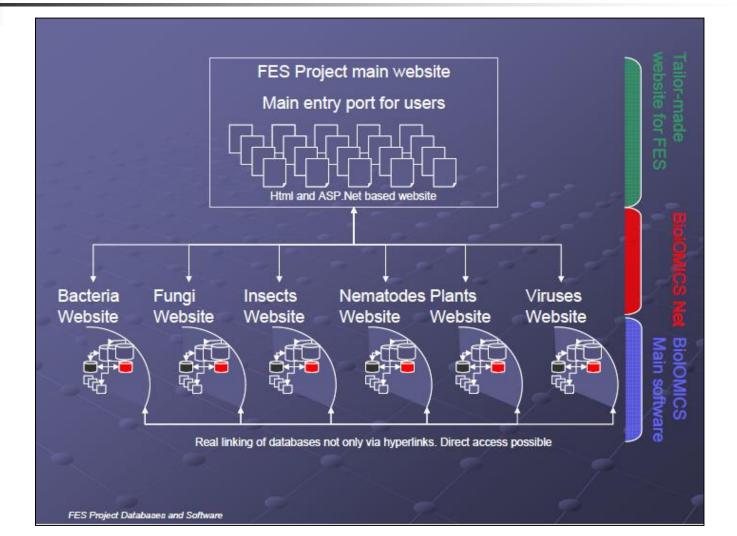
QBOL Three principle QBOL objectives for DNA-barcode identification for all quarantine plant pests or pathogens

- To DNA barcode relevant Q-organisms plus morphologically and/or taxonomically related organisms.
- 2. To develop a database of DNA barcode sequences plus relevant taxonomic/geographic/host data.
- 3. To develop a DNA bank for the selected set of Qorganisms plus morphologically and/or taxonomically related organisms.


QBOL Barcoding of life DNA-barcode identification of quarantine organisms

Targets Quarantine

Which?


- Fungi
- Arthropods
- Bacteria
- Nematodes
- Viruses
- Phytoplasmas

Council Directive 2000/29/EC EPPO list A1 and A2

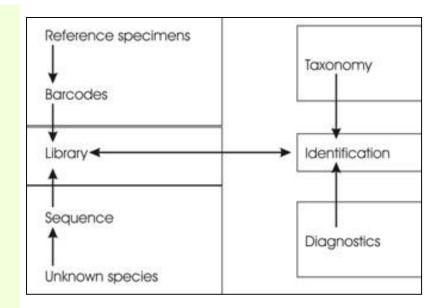
WAGENINGENUR

QBOL Barcoding of life DNA-barcode identification of quarantine organisms

QBOL Barcoding of Bacteria

- The Q-bank Bacteria database contains DNA sequence (Barcodes), morphological, phenotypical and ecological data of more than xxx species that are of relevance to bacterial phytopathology.
- Currently, the database focuses on the bacterial genera *Clavibacter*, *Xanthomonas*, *Ralstonia* and *Xylella*.

QBOL Barcoding of Bacteria


- To maintain and expand existing collection with relevant bacterial isolates (collection strains and recent field isolates).
- To unravel the taxonomic and phylogenetic identity of quarantine bacteria in support of EU regulation.
- To collect barcode data including genetic variation, inclusiveness and exclusiveness for the selected scope of Q-bacteria.
- To generate barcode sequences from a selected set of regions and for a selected set of relevant quarantine bacteria.
- To develop reliable routine DNA extraction protocols.
- To develop robust primers for PCR amplification of the barcode gene regions in the different taxa.

QBOL Quarantine bacteria on EU Directive and EPPO list

	Combined EU /	EPPO list	Q and Q-alert bacteria		
Annex I	Part A	Section I			
	1Xyllela fastidiosa				
Annex I	Part A	Section II			
1 Clavibacter michiganensis ssp. sepedonicu		nensis ssp. sepedonicus			
	2Pseudomonas solan	acearum = Ralstonia sola	anacearum (race 1, race 3)		
Annex I	Part B				
Annex II	Part A 1 <i>Erwinia stewartii</i>	Section I			
	2 Xanthomonas campestris strains pathogenic to Citrus (as Xanthomonas axonopodis pv. citri)		o Citrus (as Xanthomonas axonopodis pv. citri)		
	3 Xanthomonas campestris pv. oryzae & oryzicola = Xanthomonas oryzae pv. oryzae & oryzicola				
Annex II	Part A	Section II			
	1 Clavibacter michiganensis ssp. insidiosus				
	2 Clavibacter michigar	2 Clavibacter michiganensis ssp. michiganensis			
	3Erwinia amylovora				
	4 Erwinia chrysanthemi pv. dianthicola = Dickeya dianthicola				
	5Pseudomonas caryo	5Pseudomonas caryophylli = Burkholderia caryophylli			
	6Pseudomonas syring	6Pseudomonas syringae pv. persicae			
	7 Xanthomonas camp	7 Xanthomonas campestris pv. phaseoli			
	Xanthomonas arboricola pv. corylina (EPPO list)				
	8Xanthomonas camp	8Xanthomonas campestris pv. pruni = Xanthomonas arboricola pv. pruni			
		9Xanthomonas campestris pv. vesicatoria = Xanthomonas vesicatoria & Xanthomonas axonopodis pv. vesicatoria			
	10Xanthomonas fragar				
	11Xylophilus ampelinu	S			
Annex II	Part B				
		imfaciens pv. flaccumfaci	ens		
Q-alert EPP					
	Xanthomonas axono	Xanthomonas axonopodis pv. dieffenbachiae			
	Xanthomoans arbori	Xanthomoans arboricola pv. fragariae			
	Xanthomonas axono	podis pv. allii			

QBOL DNA sequence (Barcodes) Procedure of DNA-barcode identification

- DNA Barcoding projects have four components:
- 1. The Specimens;
- 2. The Laboratory Analysis;
- 3. The Database (e.g. BOLD, GenBank, FES Programme (NL);
- 4. The Data Analysis.

QBOL Q-bank DNA sequence (Barcodes)

	2-b	ar	nk		COMPR	REHENSIVE DATA	BASES ON REGULA	TED PLANT PESTS
Home	Bacteria	Fungi	Insects	Invasive Plants	Nematodes	Phytoplasmas	Viruses & viroids	Identification
📑 i hav		almor and I a		conditions and limitations	associated with the u	sage of the software		
Palewis	se sequence allo	gnment parai	meters					*
Paste sec	guence to align	:						
Start a	lignment			Deater Schweis Cathright D 10	aa Cayrigh C 2011 G-2a	nk mæn		

www.gbol.org

QBOL Barcoding of life The future

Bonants,2008

ABIS online Automated Biometric Identification System

www.microrao.com/identify.htm

ABIS online Automated Biometric Identification System An Advanced Bacterial Identification Software

	3nl	ine ba	cterial	ide	entificatio
Phenotypic identification of bacteria by enable users to identify the organisms to percentage probabilities. The matrix tab dependent on the accuracy of the test have been created from the matrices to rapidly growing Mycobecterie, Aeromon	based on the re le can also be results. Please ables published	esuits of their tests. The so used to view the properties note that the matrices used elsewhere, identification of	ftware uses probability mat of these organisms and to d here have not been updat of gram positive cocci, aero	rix for identific compare their ed since more	ation and the results are expressed in properties. Accuracy of the results are than a decade. Databases used here
Enterobacteriaceae					
Basic identification This method uses 16 physiological tests to identify Enterobacteriaceae members.	This method tests to iden	ed identification (uses 47 physiological thy Enterobacteriaceae members.	Member properties Use this tool to view properties of Individual Enterobacter/laceae members.		Compare properties Use this tool to view properties of Individual Enterobacterifaceae members.
Vibrios and related m Identification This method uses 44 physiological rest Volto section		S Member properties Use this tool to view properties of individual Viotos.		Compare properties Use this tool to view properties of individual Enteropacterificaces moreors.	
Pseudomonas and re	elated or	ganisms			
Identification This method uses 65 physiological tests Pseudomonas species.	s to identify	Member p Use this tool to view p Pseudon 55	roperties of Individual nonads.	Compare properties Use this tool to compare properties of individual Pseudomonads.	
Gram Positive Cocci	(aerobic	:)			
Identification This method uses 60 physiological tests Gram Postive Cocci.	s to identify	Member p Use this tool to view prop Positive State	erties of Individual Gram		Compare properties of to compare properties of individual Gram Positive Cocci.

ABIS online Automated Biometric Identification System An Advanced Bacterial Identification Software

Home	Undergraduates - Postgraduates -	Contact me - Miscellaneous -		🖾 Send mail 🛛 🖞 Guestbook 🔍 Se				
	w.microrao.com	Dnline ba	cterial ide	entification				
	Phenotypic identification of bacteria by biochemical tests (fermentation, substrate utilization etc) is still relevant. I have developed software applications that will enable users to identify the organisms based on the results of their tests. The software uses probability matrix for identification and the results are expressed in percentage probabilities. The matrix table can also be used to view the properties of these organisms and to compare their properties. Accuracy of the results are dependent on the accuracy of the test results. Please note that the matrices used here have not been updated since more than a decade. Databases used here have been created from the matrices/tables published elsewhere. Identification of gram positive cocci, aerobic gram negative bacilli, coryneforms, Bacillus spp, rapidly growing Mycobacteria, Aeromonas etc would be made available in due course of time.							
	Basic identification This method uses 16 physiological tests to identify Enterobacteriaceae members.	Advanced identification This method uses 47 physiological tests to identify Enterobacteriaceae members.	Member properties Use this tool to view properties of individual Enterobacteriaceae members	Compare properties Use this tool to view properties of individual Enterobacteriaceae members				

September 6, 2007 "ABIS 6 online" official launch with Enterobacteriaceae database.

ABIS online

Automated Biometric Identification System An Advanced Bacterial Identification Software

- ABIS online is a laboratory tool for bacterial identification, based on morpho-biochemical characters, cultural characteristics, growth conditions, ecology & pathogenicity data.
- The program allows a great flexibility in choosing biochemical tests and is an alternative to commercial systems or code-books.
- The software is linked with a germs Encyclopedia and an antibiogram interpreter.
- Main identifiable categories: Enterobacteriaceae, Pasteurellaceae, Campylobacteraceae, Bacillaceae, Staphylococus, Streptococcus, Aeromonas, Pseudomonas and related species.

ABIS online Automated Biometric Identification System Biochemical tests and methods for bacterial identification

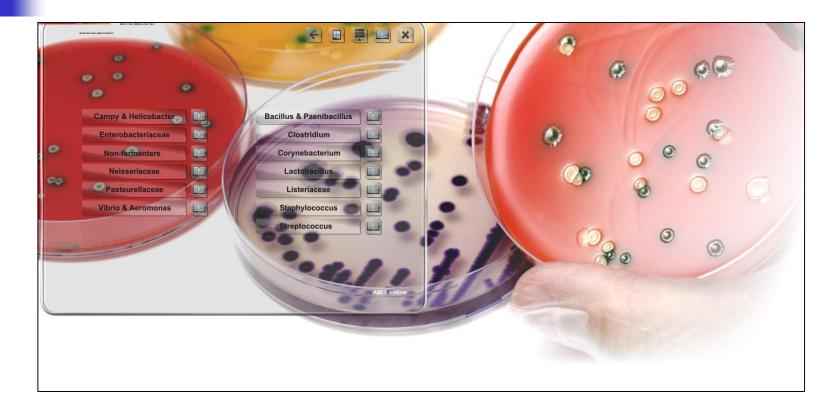
ABIS online

Automated Biometric Identification System Library

- More than 700 species are included in databases and more than 800 species in encyclopedia.
- A beta version of 16S RNA gene sequence identification is also available from the main menu.
- Although we have optimized the program for Android operating system, some minor graphical issues may appear on low screen resolution devices.
- Bacteria identification (version 1118532) has a file size of 112.20 MB and is available for download from our website.

ABIS online Automated Biometric Identification System Library

		Searc
		Web ABIS Encyclopedia
The	e Great Bacteria Bo	ook
	ABIS online Encyclopedia	
Quick links	A Abiotrophia	M Macrococcus
the state of the state of the	Acidovorax	Mannheimia
Actinobacillus	Acinetobacter	Microbacterium
Aerococcus	Actinobacillus	Microvirgula
Aeromonas Resilius	Aerococcus	Moellerella
Bacillus Campylobacter	Aeromonas	Moraxella (Branhamella
Clostridium	Aggregatibacter	Morganella
Corynebacterium	🛛 Aliivibrio	Morococcus
Enterobacteriaceae	Allobaculum	
Enterococcus	Alysiella	Neisseria
Erysipelothrix	Anaerobacillus	Neisseria Nosocomiicoccus
Gemella	Aneurinibacillus	- Nosocomicoccus
Haemophilus	Aquaspirillum	O C MATTER
Helicobacter	Arcobacter	Obesumbacterium
Lactobacillus	Arthrobacter	Oceanimonas
Moraxella	Arsenophonus	I Oligella
Neisseria	Avibacterium	
Pasteurella	B	P
Pseudomonas	Basilius	Paenibacillus
Staphylococcus	Bacillus Bergeriella	Pantoea
Streptococcus	Biberstenia	Pasteurella
Vibrio	Blautia	Pectobacterium Pelomonas
	Brenneria	Peromonas Phocoenobacter
	Brevibacillus	Photobacterium
	Brevibacterium	Photorhabdus
	Brevundimonas	Plesiomonas
	Brochotrix	💴 Pragia
	Budvicia Bulleidia	Prolinoborus
	Burkholderia	Proteus
	Buttiauxella	Providencia Pseudarthrobacter
		Pseudoglutamicibacter
	С	Pseudogidiamicibacter
	Campylobacter	Psychrobacillus
	Cellulosilyticum	Pullulanibacillus
	Cedecea	
	Citrobacter	R
	Clavibacter	Rahnella
	Clostridium	Raoultella
	Comamonas	Colotopia


ABIS online Automated Biometric Identification System Library

	Maountena
Comamonas	
Conchiformibius	Ralstonia
	Rathayibacter
Cosenzaea	Riemerella
Corynebacterium	Rivicola
Crenobacter	Rummeliibacillus
	M Rummeliibaciilus
_	
D	S
Dermabacter	Salimicrobium
Dickeya	Salinicoccus
Dolosicoccus	
Dolosicoccus	Salinivibrio
_	Salmonella
E	Sanguibacter
Edwardsiella	Serratia
Eikenella	Shigella
Enteric Groups	
	Shimwellia
Enterobacter	Simonsiella
Enterococcus	Snodgrasella
Enterovibrio	Solibacillus
Eremococcus	Solobacterium
Erysipelothrix	
	Sphingomonas
Erwinia	Sporosarcina
Escherichia	Staphylococcus
Ewingella	Stenotrophomonas
5	Stenoxybacter
F	
	Streptococcus
Facklamia	Sulfurospirillum
Flavonifractor	
	т
	Tatumella
•	
G	Tolumonas
Gallibacterium	Trabulsiella
Gemella	Turicella
Geobacillus	Turicibacter
Globicatella	Mar runcibacter
Grimontia	U
	Uruburuella
н	
Hafnia	N.
	V
Haemophilus	Vibrio
Helicobacter	Vitreoscilla
Holdemania	Virgibacillus
	Viridibacillus
1	
	Volucribacter
💵 Ignavigranum	
	W
J	🛛 Wolinella
Jeotgalicoccus	
	X
ĸ	Xenorhabdus
Kingella	
Klebsiella	Y
	-
Kluyvera	Yersinia
Kyrpidia	Yokenella
L	
Lactobacillus	
Lactococcus	
Lactovum	
Leclercia	

ABIS online Automated Biometric Identification System First enter the bacterial name e.g. *Bacillus subtilis* in the check box

ABIS online Automated Biometric Identification System Follow the family/species names

ABIS online Automated Biometric Identification System Find the characteristics of Bacillus spp.

	Positive	Negative	Unknown			Positive Nega	ative Unknown			
Gram-positive staining			۲	27	Egg-yolk reaction				-01	
Motility			۰	95	Nitrates reduction		۰			
Growth on usual media (1)				75	Voges-Proskauer test (V	P) 💿 💿	۰			
Hemolysis										
Para-central / central spore					production from:					
Sub-terminal / terminal spore					N-AcetyI-D-Glucosamine		•			
Swelling the sporangium				89	Arabinose		•			
Growth at 45°C				72 ***	Cellobiose		•			
Growth at 65°C				68 **	Fructose		۰			
Growth at pH 5.7				78	Glucose		•			
Growth in 7% NaCl medium				84	Glycerol		•			
Anaerobic growth				.73	Glycogen					
				61	Inositol					
Growth in Lysozyme (0.001%			۰	86	Lactose		1 B	1 March		
Casein hydrolysis			۰	95	Mannitol					
Esculin hydrolysis				83	Mannose		0			
Gelatin hydrolysis			۰	64	Maltose		100/10			
Starch hydrolysis				55	Melezitose			The second		
Tyrosine degradation				78	Melibiose		-	-		
Beta-galactosidase (ONPG)			۲	80	Raffinose					
Catalase				61	Rhamnose		•	1 .		
Oxidase			۰				•			
Urease			۰	71 **?	Ribose		•			
Arginine dihydrolase (ADH)				***	Salicin		۰	-		
Lysine decarboxylase (LDC)				57 ***	Sorbitol		•			
Ornithine decarboxylase (OD	2)		•	***	Sucrose (saccharose)		•			
Indole production				68	Starch	•	• •		-	
Citrate utilization				86 ***	Trehalose	-	• •			
				95	Xylose	0	<u> </u>			

ABIS online

Automated Biometric Identification System Validation

- Many identification systems (API, Biolog, etc.) become available in recent years, from commercial identification kits, to online software. Each of these systems has its limitations.
- To tackle these problems we have created ABIS online, a laboratory tool for bacterial identification, based on morphology, biochemical characters, cultural characteristics, ecology and pathogenicity data.
- The aim of the study was to present and validate ABIS software by comparison to a commercially available identification system (API strips and apiweb[™] bioMerieux software), testing 16 reference strains and 123 wild isolates.
- APIWEB[™](API databases) confirmed ABIS's results with a high percentage, showing a very good taxa identification by ABIS software.

ABIS online Automated Biometric Identification System Comparative reference strains identification between ABIS online and apiweb[™] software

#	Strain name and code	ABIS results id % ^a	apiweb™ results id % ^b
1	<i>Staphylococcus aureus</i>	<i>Staphylococcus aureus</i>	<i>Staphylococcus aureus</i>
	ATCC 25293	subsp. <i>aureus</i> 99%	97.8%
2	<i>Helicobacter pylori</i> ATCC 43504	<i>Helicobacter pylori</i> 94%	Helicobacter pylori 99.9%
3	<i>Bacillus thuringiensis</i>	<i>Bacillus thuringiensis</i>	<i>Bacillus cereus</i> , possibility of
	NCIMB 9134	93%	<i>B. thuringiensis</i> 98.9%
10	Escherichia coli ATCC 8739	<i>Escherichia coli</i> 98%	Escherichia coli 99.9%
14	<i>Pseudomonas aeruginosa</i>	<i>Pseudomonas aeruginosa</i>	<i>Pseudomonas aeruginosa</i>
	ATCC	92%	98.1%
16	<i>Lactobacillus paracasei</i> CCM	<i>Lactobacillus paracasei</i>	<i>Lactobacillus paracasei</i> subsp.
	1837	subsp. <i>paracasei</i> 94%	<i>paracasei</i> 1 / 3 48.0 / 51.0%

Legend: ^a- ABIS %id represents the percentage of similarity with taxa from the database, all databases containing a matrix where probabilistic incidence values are allocated for every taxon and their corresponding morpho-biochemical characters; ^b- apiweb[™] %id is a probabilistic calculation using bioMerieux own system procedure.

Costin and Ionut,2017

ABIS online Automated Biometric Identification System Comparative reference strains identification between ABIS online and apiweb[™] software

- Apiweb[™] confirmed ABIS's results with a high id%, proving very good taxa identification by ABIS program.
- ABIS online (ABIS online bacterial identification software version 12, http://www.tgw1916.net) is capable of correct phenotypical species identification, generates reliable results, is a powerful tool for microbiology lab and the Encyclopedia connection provides essential information about the ecological significance, pathology and other features of the identified strains.

ABIS online Request for adequate identification From a researcher

- I am having a bit of trouble identifying an unknown organism. any help would be appreciated!
- The following describes my organisms and the tests I have run:
- Gram Negative
- o Coccobaccilli
- Motility: nonmotile (subjective but almost certain)
- FTM: facultative anarobe
- o Citrate+
- Lysine+
- Glucose+
- o Mannitol -
- o Lactose -
- o Sucrose -
- o Maltose -
- Methyl red+
- **VP-**
- H2S (KIA)-
- o Indole -
- o Urea -
- Litmus milk: purple (confirms nonlactose fermenter)
- o Gel-
- Nitrate+:
- Catalase+
- Oxidase+/- (uncertain)
- I thought it might have been shigella, but shigella is both citrate AND lysine negative, which clearly conflict. Any help from experienced microbiologists (or anyone with knowledge of these) would be appreciated!

ABIS online

Requests for adequate identification A recommendation from a reader on Research Gate

- Putting your biochemical results into PIBWIN software your organism is identified as *Escherichia blatae*. But some more biochemical tests will be required for accurate identification.
- You can try on your own with this software (freely available in net) also you can put all your results into another online identification software named ABIS online.
- I think this will solve your purpose.

Translations for "bacterium" Alternative meanings/domain in parentheses

Afrikaan	bakterie. (various references)
Albanian	bakter (bacteria). (various references)
Arabic 🖾	(bug). (<u>variby) جرثوم</u>
Bulgarian 🗵	бактерия. (various references)
Chinese 🗵	網菌 (Bacteria, Bacterial, bacterially). (<u>various references</u>)
Czech	baktérie (bacteria). (various references)
Danish	bakterie. (various references)
Dutch	bacterie. (various references)
Esperanto	bakterio. (various references)
Finnish	bakteeri (bacteria). (various references)
French	bactérie (bacteria). (various references)
Frisian	baktearje. (various references)
German	bakterie (germ), Spaltpilz. (various references)
Greek 🗵	βακτηρίδιο, βακτήριο (bacillus). (<u>various references</u>)
Hebrew 🖾	בקטריע (bacteria, microorganism). (<u>various references</u>)

Translations for "bacterium" Alternative meanings/domain in parentheses

Hungarian	baktérium (bacteria, germ, microbe, wog). (various references)
Italian	batterio (prokaryotic). (<u>various references</u>)
Japanese Kanji 🗹	細菌 (bacillus, germ). (<u>various references</u>)
Japanese Katakana ⊠	きア (a little, bacillus, ban, be equal to, be fit for, bedding, cloth, germ, gold, gold general, napkin, prohibition, quilt, serve, small quantity, unit of weight ~600g), さいきア (bacillus, germ, latest, most recent, nowadays, reappointment, slight flaw). (<u>various</u> <u>references</u>)
Korean 🗹	박태리아 (Bacteria). (various references)
Manx	bacteyr. (various references)
Papiamen	bakteria. (various references)
Pig Latin	acteriumbay.(various references)
Portuguese	bactéria. (various references)
Russian 🗵	бактерия (bacteria). (<u>various references</u>)
Spanish	bacteria (bacteria, germ). (various references)
Swedish	bakterie (bacteria, bug, germ, microbe). (various references)
Turkish	bakteri (bacterial, germ), bakterí (germ, microbe). (various references)
Ukranian 🖭	бактерія. (various references)
Persian	لائی (Bacterium) باکتری

General terms and abbreviations

- DEPC: Diethylpyrocarbonate (DEPC) treatment is the most commonly used method for eliminating RNase contamination from water, buffers, and other solutions.
- Electropherogram: is a graphical representation of data received from a sequencing machine and is also known as a trace.
- Generic primers: This option will design standard PCR primers according to the region input options you select. These options allow you to specify what part of a sequence you wish to amplify.
- Prions: Proteins that multiply themselves. An infectious agent smaller than a virus, composed primarily of protein. e.g. Mad Cow disease,...

- Agrios, G.N. 2005. Plant Pathology. Fifth ed. Univ. of Florida, Elsevier Academic Press, pp. 948.
- Abedone, S.T. Power point presentations and lecture notes. The Ohio State University. www.phage.org. abedon.1@osu.edu.
- BIO 184 Laboratory Manual Page 38 CSU, Sacramento Updated: 12/19/2005 Eexperiment 3: Creating recombinant DNA molecules.
- Alfano, J.R., Collmer, A. 1996. Bacterial Pathogens in Plants: Life Up Against the Wall. Plant Cell 8, 1683-1698.
- Alvarez, A.M. 2004. Integrated approaches for detection of plant pathogenic bacteria and diagnosis of bacterial diseases. Annual Review of Phytopathology 42, 339-366.
- Ayers, S. H., Rupp, P. & Johnson, W. T. 1919. A Study of Alkali-forming Bacteria in Milk. Bulletin no. 782. Washington, DC: US Department of Agriculture.
- Balows, A., H. G. Trüper, M. Dworkin, and K.-H. Schleifer (Eds.).1992. The Prokaryotes. 2nd ed. Springer-Verlag. New York, NY. Over 4,100 pages in 4 volumes.
- Bergey's Manual of Systematic Bacteriology, 2nd Edition(2001-2009).
- Bové, J. M., and M. Garnier. 2003. Phloem-and xylem-restricted plant pathogenic bacteria. Plant Science 164: 423-438.
- Bradbury, J.F. 1970. Isolation and preliminary study of of bacteria from plants. Review of Plant Pathology 49:213-218.
- Bradbury, J. F. 1988. Isolation and preliminary study of bacteria from plants. A revision of the article in Review of Plant Pathology 49(5):213-218, 1970.

- Bradbury, J.F. 1988. Identification of cultivable bacteria from plants and plant tissue cultures by use of simple classical methods. Acta Hortic 225:27-37.
- Brenner, D. J., N. R. Krieg, J. T. Staley and G. M. Garrity (Eds.). 2005. Bergey's Manual of Systematic Bacteriology: Volume 2: The Proteobacteria, Part B: The Gammaproteobacteria. 2nd edition, Springer-Verlag, 1108 pages.
- Bull C.T., De Boer S.H., Denny T.P., Firrao G., Fischer-LeSaux M., Saddler G.S., Scortichini M., Stead D.E., Takikawa Y., 2008. Demystifying Nomenclature of Bacterial Plant Pathogens. Journal of Plant Pathology 90: 403-417.
- Bull, C.T., S.H. De Boer, T.P. Denny, G. Firrao, M. Fischer-Le Saux, G.S. Saddler, M. Scortichini, D.E. Stead and Y. Takikawa. 2010. Comprehensive List of Names of Plant Pathogenic Bacteria, 1980-2007. Journal of Plant Pathology, 92 (3), 551-592 (LETTER TO THE EDITOR).
- Bull, C.T., S.H. De Boer, T.P. Denny, G. Firrao, M. Fischer-Le Saux, G.S. Saddler, M. Scortichini, D.E. Stead and Y. Takikawa. 2010. Comprehensive List of Names of Plant Pathogenic Bacteria(2008-2010). Journal of Plant Pathology 94 (1), 21-27.
- Burns, R. 2009(ed.). Methods in Molecular Biology, Plant Pathology, vol. 508.
 Plant Pathology-Techniques and Protocols. Humana Press, 321 pp.
- CAB International 2002. Plant Pathologist's Pocketbook (eds. J.M. Waller, J.M. Lenné and S.J. Waller), 3rd Edition, 504 pages.

- Cain, D., H. Hanks, M. Weis, C. Bottoms, and J. Lawson. 2017. Microbiology Laboratory Manual B2420. Collin County Community College District, McKinney, TX. 133 pp.
- Charles *et al.*,2003. The motility of Mollicutes.
- Civerolo, E.L., Collmer, A., Davis, R.E., Gillaspie, A.G., eds. 1987. Plant Pathogenic Bacteria. Proceedings of the Sixth International Conference on Plant Pathogenic Bacteria, Maryland, USA. Boston, USA: Nijhoff.
- Claus, D. and Berkeley, R.C.W. 1986. Genus *Bacillus* Cohn, 1872. In: Sneath, P.H.A., Mair, N.S., Sharpe, M.E. and J.G. Holt., Ed., Bergey's Manual of Systematic Bacteriology, The Williams & Wilkins Co., Baltimore 11051139.
- Colling, D.B. 2000. Fungal and bacterial taxonomy, diagnostics, and ecology.
- Cooke, B.M.; D. Gareth Jones and B. Kaye (eds.). 2006. The epidemiology of plant diseases. Second Edition, Springer, 576 pp.
- COST 873.2008. Training Course for Young Phytobacteriologists. York, UK.
- de Lacy Costello, B.P.J., Ewen, R.J., Garner, K., Ratcliffe, N.M., Schleicher, T. and Spencer- Phillips, P.T.N. 2006. Sensors for detection of bacterial infections of potato tubers: from *Erwinia* to *Clavibacter*. Proceedings of the 11th International Conference on Plant Pathogenic Bacteria. Royal College of Physicians of Edinburgh, Scotland, pp. 27-28.
- Demaree, J.B.& Smith N.R.1952. Nocardia vaccinii n. sp. causing galls on blueberry.

- Dickey R.S., 1979. *Erwinia chrysanthemi*: a comparative study of phenotypic properties of strains from several hosts and other *Erwinia* species. Phytopathology 69: 324-329.
- Dworkin, M., Stanley Falkow, Eugene Rosenberg, Karl-Heinz Schleifer, Erko Stackebrandt (eds.).2006. The Prokaryotes -A Handbook on the Biology of Bacteria. 7 Volume-Set, Part 1-4. Springer Science+Business Media, Inc.
- Elboutahiri, N., I. Thami-Alami, E. Zaïd and S. M. Udupa. 2009. Genotypic characterization of indigenous *Sinorhizobium meliloti* and *Rhizobium sullae* by rep-PCR, RAPD and ARDRA analyses. African Journal of Biotechnology, 8 (6): 979-985.
- Giblot-Ducray, D., A. Marefat, M.R. Gillings, N. M.Parkinson, J. P.Bowman, K. Ophel-Keller, C.Taylor, E. Facelli, E.S. Scott. 2009. Proposal of *Xanthomonas translucens* pv. *pistaciae* pv. nov., pathogenic to pistachio (*Pistacia vera*). Systematic and Applied Microbiology 32,549-557.
- Gardan, L., Gouy, C., Christen, R., & Samson, R. 2003. Elevation of three subsp. of *Pectobacterium carotovorum* to species level: *Pectobacterium atrosepticum* sp. nov., *Pectobacterium betavasculorum* sp. nov. and *Pectobacterium wasabiae* sp. nov. International Journal of Systematic and Evolutionary Microbiology, 53, 38-391.

- Gould, A.B. and J.H. Lashomb. 2005. Bacterial Leaf Scorch of Shade Trees. Feature Story, APSnet.
- Hauben, L., Vauterin L., Swing, J., Moore E.R.B. 1997. Comparison of 16S ribosomal DNA sequences of all *Xanthomonas* species. Int. J. Syst. Bacteriol. 47(2): 328-335.
- Hodgetts J., Ball, T., Boonham, N., Mumford, R. and M. Dickinson. ICKINSON. 2007. The use of terminal restriction fragment length polymorphism (T-RFLP) for identification. Plant Pathology 56: 357-365.
- Hugh, R. and E. Leifson. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative bacteria. J. Bacteriol. 66:24-26.
- Fahy, P.C. and G.J. Persley.1983. Plant Bacterial Diseases- A Diagnostic Guide. Academic Press, Australia, 393 pages.
- Janda, J.M. and S. L. Abbott.2002. Bacterial Identification for Publication: When Is Enough Enough? J. Clin. Microbiol. 40(6): 1887-1891.
- Janse, J.D.2004a. Fatty acid analysis in the identification, taxonomy and ecology of (plant pathogenic) bacteria. In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans AD, van Elsas JD, eds. Molecular Microbial Ecology Manual, 2nd ed. New York, USA: Springer Publishing, 973-982.
- Janse, J. D. 2006. Phytobacteriology: Principles and Practice. CABI Publishing, 368 pp.

- Jayaraman, J. and J.P. Verma. 2002. Fundamentals of Plant Bacteriology, 1st Ed. Oscar Publications, India.
- Kersters, K., Pot, B., Dewettinck, D., Torck, U., Vancanneyt, M., Vauterin, L., Vandamme, P. 1994. Identification and typing of bacteria by protein electrophoresis. In: Bacterial Diversity and Systematics. Priest FG, Ramos-Cormenzana A, Tindall B, eds. New York, USA: Plenum Press, 51-66.
- King, E.O, Ward, M.K. and Raney, D,E. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301-307.
- Lee, I.-M. & Davis, R.E.1984. New media for growth of *Spiroplasma citri* and corn stunt *spiroplasma*. Phytopathol., 74: 84-89.
- Lelliott, R.A., & Stead, D.E. (1987). Methods for the diagnosis of bacterial diseases of plants. In T.F. Preece (ed.), Methods in Plant Pathology (vol 2, p 216). Oxford, UK: Blackwell Scientific Publications.
- Lemattre, M., Freigoun, S., Rudolph, K. and Swings, J.G. 1994. Plant Pathogenic Bacteria. Proceedings 8th International Conference, Versailles (France), June 9-12, 1992. Paris, France: INRA/ORSTOM. Maddox ,C. W. 2004. Molecular Diagnostic Techniques for Bacteriology. University of Illinois.
- Lojkowska *et al.*,2004. in EPPO Conference on Quality of Diagnosis and New Diagnostic Methods for Plant Pests.
- Marshall, D.S.2002. Plant Diseases caused by Bacteria. Plant-20 Path-20 Lecture-204-PPT.

- Miller, S. 2006. Diagnosing Plant Diseases Caused by Bacteria. IPDN Training Meeting, IITA, Cotonou, Benin. The Ohio state University.
- Molecular cloning- A laboratory manual on the web. 2001. Cold Spring Harbor Laboratory Press.
- Momol, T., P. Pradhanang and C. A. Lopes. 2001. Bacterial Wilt of Pepper. Fact Sheet PP 189, Florida Cooperative Extension Service.
- Momol, M. T., Balaban, M. O., Korel, F., Odabasi, A., Momol, E. A., Folkes, G., and Jones, J. B. 2004. Discrimination of plant pathogenic bacteria using an electronic nose. Online. Plant Health Progress doi:10.1094/PHP-2004-0405-01-HN.
- Musetti, R. and M.A. Favali. 2004. Microscopy Techniques Applied to the Study of Phytoplasma diseases: Traditional and Innovative Methods. FORMATEX. pp. 72-80.
- Palleroni N. J. 1984. Genus I. Pseudomonas Migula 1894, in Bergey's Manual of Systematic Bacteriology, Vol. 1, eds Krieg N. R., Holt J. G. (Baltimore, MD: Williams & Wilkins;), 141-199.
- Palleroni, N.J. and J.F. Bradbury. 1993. *Stenotrophomonas*, a new bacterial genus for *Xanthomonas maltophilia* (Hugh 1980) Swings et al. 1983. Int. J. Syst. Bacteriol. 43: 606-609.
- Pathak, V.N. 1987. Laboratory Manual of Plant Pathology. 2nd Ed. Oxford IBH Publ. Co. New Delhi. Plant Bacteriology, Manual.2008. Cost 873- Stone Fruit Nut Health-Short term training mission- Central Science Laboratory, York, UK.59 pp.
- Plant Path 405: Plant Pathogens and Diseases.
- Pierce, L., Schroth, M. N., and McCain, A. H. 1990. Viscosity test for preliminary identification of strains of *Xanthomonas campestris*. Plant Dis. 74:646-647.

- Poliakoff, F. ; Fischer-Le Saux, M. ; Hunault, G. ; François, C. ; Rivoal, C. ; Bonneau, S. ; Perret, S. ; Soubelet, H. ; Caffier, D. 2005. Computer-assisted identification and clustering for regulated phytopathogenic bacteria: construction of a reference database and development of a computer system. Bulletin OEPP/EPPO, Bulletin 35, 61-68.
- Prescott, 2006. Procaryotic cell structure and function, Chapter 3, pp.39-78.
- Rhodes-Roberts, Muriel E. & F.A. Skinner.1982. Bacteria and Plants (The Society for Applied Bacteriology Symposium Series, No. 10). Academic Press Inc.(London) Ltd; 264 pp.
- Salton, M.R.J and K-S. Kim. Structure. Medmicro chapter 2. htm
- Samson R., Legendre J.B., Christen R., Fischer-Le Saux M., Achouak W., Gardan L., 2005. Transfer of *Pectobacterium chrysanthemi* (Burkholder et al.,1953) Brenner *et al.*,1973 and *Brenneria paradisiaca* to the genus *Dickeya* gen. nov. as *Dickeya chrysanthemi* comb. nov. and *Dickeya paradisiaca* comb. nov. and delineation of four novel species, *Dickeya dadantii* sp. nov., *Dickeya dianthicola* sp. nov., *Dickeya dieffenbachiae* sp. nov. and *Dickeya zeae* sp. nov. International Journal of Systematic and Evolutionary Microbiology 55: 1415-27.
- Sasser, M.J. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. Technical note # 101 MIDI, 115 Barksdale Professional Center, Newark, DE 19711.
- Schaad, N.W. and Stall, R.E. 1988. Xanthomonas. In: Laboratory Guide for Identification of Plant Pathogenic Bacteria 2nd ed. (ed. N.W. Schaad). APS Press St. paul, Minnesota. Pp.81-84.

- Schaad, W., Jones, J.B. and Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. Third Edition. APS Press, St. Paul, MN, USA, 398 pp.
- Schaad *et al.*, 2005. Reclassification of *Xanthomonas*. Systematic and Applied Microbiology.
- Schaad, N.W, Postnikova. E., Lacy. G., Barek-Fatmi. M., Chang. C.J. 2004a. *Xylella fastidiosa* subspecies: *X. fastidiosa* subsp. *piercei* subsp. nov., *X. fastidiosa* subsp. *multiplex* subsp. nov., and *X. fastidiosa* subsp. *pauca* subsp. nov. Systematic and Applied Microbiology 27(3), 290-300.
- Schaad, N.W., Postnikova, E., Lacy, G., M'Barck ,F., Chang, C. J. 2004b. Xylella fastidiosa subspecies: X. fastidiosa subsp. piercei, subsp. nov., X. fastidiosa subsp. multiplex, subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. -Erratum. Systematic and Applied Microbiology 27: 763.

- Schaad N.W., Postnikova E., Lacey G.H., Sechler A., Agarkova I., Stromberg P.E., Stromberg V.K., Vidaver A.K. 2005. Reclassification of *Xanthomonas campestris* pv. *citri* (*ex* Hasse 1915) Dye 1978 forms A, B/C/D, and E as *X. smithii* subsp. *citri* (*ex* Hasse) sp. nov. nom. rev. comb. nov., *X. fuscans* subsp. *aurantifolii* (*ex* Gabriel 1989) sp. nov. nom. rev. comb. nov., and *X. alfalfae* subsp. *citrumelo*(*ex* Riker and Jones) Gabriel *et al.* 1989 sp. nov. nom. rev., *X. campestris* pv. *malvacearum* (*ex* Smith 1901) Dye 1978 as *X. smithii* subsp. *smithii* nov. comb. nom. nov., *X. campestris* pv. *alfalfae* (*ex* Riker and Jones, 1935) Dye 1978 as*X. alfalfae* subsp. *alfalfae* (*ex* Riker *et al.* 1935) sp. nov. nom. rev., and "var. fuscans" of *X. campestris* pv. *phaseoli* (*ex* Smith, 1897) Dye 1978 as *X. fuscans* subsp. *fuscans* sp. nov. Systematic and Applied Microbiology 28: 494-518.
- Schaad N.W., Postnikova E., Lacey G., Sechler A., Agarkova I., Stromberg P.E., Stromberg V.K., Vidaver A.K. 2006. Emended classification of xanthomonad pathogens on citrus - Erratum. Systematic and Applied Microbiology 29: 690-695.
- Schaechter, M. 2004 (ed.). The Desk Encyclopedia of Microbiology. Elsevier Academic Press. pp.1149.
- Singleton, P. 2004. Bacteria in biology, biotechnology and medicine, 6th ed., Wiley, 559 pp.

- Smith, Erwin F.1905. Bacteria in Relation to Plant Diseases. Volume One. Methods of Work and General Literature of Bacteriology Exclusive of Plant Diseases. Carnegie Institution of Washington, 1st ed., 285 pp.
- Sneath, P.H.A. 1984. Bacterial nomenclature. In: Krieg N.R., Holt J.G. (eds). Bergey's Manual of Systematic Bacteriology, Vol.1, pp 19-23. Williams & Wilkins, Baltimore, MD, USA.
- Spencer, J. F.T. and Ragout de Spencer, A. (eds.). 2004. Environmental Microbiology: Methods and Protocols. Humana Press Inc., 423 pp.
- Starr, M.P., H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (eds.).1981. The Prokaryotes: a Handbook on Habitats, Isolation, and Identification of Bacteria. Berlin, Germany: Springer Verlag.
- Starr, M. P., C. L. Jenkins, L. B. Bussey, and A. G. Andrewes. 1977. Chemotaxonomic significance of the xanthomonadins, novel brominated arylpolyene pigments produced by bacteria of the genus *Xanthomonas*. Arch. Microbiol. 113:1-9.
- Stinton, J.A., Persaud, K.C., Stead, D., Bryning, G. & Parkinson, N. 2006. Using an SPMEEnose to identify quarantine pathogens of potatoes. Proceedings of the 11th International Conference on Plant Pathogenic Bacteria. Royal College of Physicians of Edinburgh, Scotland, pp. 29-30.
- Strange, R. N. 2003. Introduction to Plant Pathology, 497 pp. John Wiley & Sons Ltd.

- Swings, J. and Civerolo E.L.(eds.) 1993. Xanthomonas. Chapman & Hall, 399 pages.
- Tolaas A.G. 1915. A bacterial disease of cultivated mushroom. Phytopathology 5, 51-54.
- Trigiano, R. N., M. T. Windham and A. S. Windham. 2006. PLANT PATHOLOGY-Concepts and Laboratory Exercises. CRC Press LLC, 702 pp.
- Todar, K. 2003. Structure and function of prokaryotic cells. University of Wisconsin-Madison Department of Bacteriology.
- The training workshop "Sampling and diagnostic tools for Xylella fastidiosa 19-22 September, 2017 - Locorotondo, Italy, in the framework of the project "The EU project 'Pest Organisms Threatening Europe' (POnTE).23 pp.
- United States Department of Agriculture. 2007. New Pest Response Guidelines Huanglongbing Disease of Citrus pp.143.
- van der Zwet, T. and S.V. Beer, 1995. Fire blight- Its Nature, Prevention and Control: A Practical Guide to Integrated Disease Management. U.S. Department of Agriculture, Agriculture Information Bulletin 631, 1-97.
- Vanneste, J.L. 2000. Fire Blight: The Disease and its Causative Agent Erwinia amylovora. CABI Publishing. New Zealand, 370 pp.
- Vidaver, A.K. and P.A. Lambrecht. 2004. Bacteria as plant pathogens. The Plant Health Instructor. DOI: 10.1094/PHI-I-2004-0809-01.
- Wei, W., Robert E. Davis , Ing-Ming Lee and Yan Zhao. 2007. Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int. J. Syst. Evol. Microbiol., 57: 1855-1867.

- Wilson, A. D., and Lester, D. G. 1997. Use of an electronic-nose device for profiling headspace volatile metabolites to rapidly identify phytopathogenic microbes. Phytopathology 87: S116.
- Weintraub, P. G. and P. Jones (eds.)2010. Phytoplasmas: genomes, plant hosts, and vectors. CABI,331 pp.
- White, B. 1995. Southerns, Northerns, Westerns, & Cloning "Molecular Searching" Techniques, MIT.
- Wikipedia, the free encyclopedia.2006. Ribosome.
- Yabuuchi E., Kosako Y., Naka T., Suzuki S., Yano I., 1999. Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen, and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas. Microbiology and Immunology 43: 339-349.
- Young, J. M., Saddler, G.S., Takikawa, Y., De Boer, S.H., Vauterin, .L, Gardan, L., Gvozdyak, R.I., Stead, D.E. 1996. Names of plant pathogenic bacteria 1864-1995. ISPP Subcommittee on Taxonomy of Plant Pathogenic Bacteria. Review of Plant Pathology 75, 721-763.
- Young J.M., Kuykendall L.D., Martînez-Remero E., Kerr A., Sawada H., 2001b. A revision of *Rhizobium* Frank 1889, with an emended description of the genus, and the inclusion of all species of *Agrobacterium* Conn 1942 and *Allorhizobium undicola* de Lajudie *et al.* 1998 as new combinations: *Rhizobium radiobacter*, *R. rhizogenes*, *R. rubi*, *R. undicola*, and *R. vitis*. International Journal of Systematic and Evolutionary Microbiology 51: 89-103.

- Young J.M., Bull C.T., De Boer S.H., Firrao G., Gardan L., Saddler G.E., Stead D.E., Takikawa Y. 2004a. Names of plant pathogenic bacteria published since 1995. Report of the Taxonomy of Bacterial Plant Pathogens Committee of the International Society of Plant Pathology.
- Zhao, Y., Wei, W., Lee, I.-M., Shao, J., Suo, X. and Davis, R.E. (2009b). Construction of an interactive online phytoplasma classification tool, *PhyClassifier, and its application in analysis of the peach X-disease phytoplasma group* (16SrIII). International Journal of Systematic and Evolutionary Microbiology 59: 2582-2593.